
Page 1 of 4

CSE 142, Autumn 2019
Programming Assignment #7: Personality Test (20 points)

Due: Tuesday, November 19, 2019, 11:59 PM

This assignment will give you practice with input files, arrays, and producing an external output file. Turn in a file named

Personality.java. You will also need the two input files personality.txt and bigdata.txt from the

course web site. Save these files in the same folder as your program.

You are going to write a program that processes an input file of data for a personality test known as the Keirsey

Temperament Sorter. (You can find out more about the Keirsey Temperament Sorter at http://www.keirsey.com.) The

Keirsey personality test involves answering 70 questions each of which have two answers. The Keirsey test measures four

independent dimensions of personality:

Extrovert versus Introvert (E vs I): what energizes you

Sensation versus iNtuition (S vs N): what you focus on

Thinking versus Feeling (T vs F): how you interpret what you focus on

Judging versus Perceiving (J vs P): how you approach life

Individuals are categorized as being on one side or the other of each of these dimensions. The corresponding letters are

put together to form a personality type. For example, if you are an extravert, intuitive, thinking, perceiving person then

you are referred to as an ENTP. Usually the letter used is the first letter of the corresponding word, but notice that

because the letter “I” is used for “Introvert”, the letter “N” is used for “iNtuition.”

If you are interested in taking the personality test yourself, you will find a link from the class webpage to an online form

with the 70 questions. We will release a data file called bigdata.txt that includes data from students in the class.

Program Overview:

The input file will contain a series of line pairs, one per person. The first line will have the person’s name (possibly

including spaces) and the second line will have a series of 70 answers all in a row (all either “A”, “B” or “-”). Your job is

to compute the scores and overall result for each person and to report this information to an output file.

The Keirsey test involves 70 questions answered either A or B. The A answers correspond to extravert, sensation,

thinking and judging (the left-hand answers in the list above). The B answers correspond to introvert, intuition, feeling

and perceiving (the right-hand answers in the list above). For each of these dimensions, we determine a number between

0 and 100 and indicate whether they were closer to the A side or the B side. The number is computed by figuring out

what percentage of B answers the user gave for that dimension (rounded to the nearest integer).

Let’s look at a specific example. Suppose that someone’s answers divide up as follows:

Dimension # of A answers # of B answers % B Result

Extrovert/Introvert 1 9 90% I

Sensing/iNtuition 17 3 15% S

Thinking/Feeling 18 2 10% T

Judging/Perceiving 18 2 10% J

These numbers correspond to the answers given by the first person in the sample input file (“Betty Boop”). We add up

how many of each type of answer we got for each of the four dimensions. Then we compute the percentage of B answers

for each dimension. Then we assign letters based on which side the person ends up on for each dimension. In the

Extrovert/Introvert dimension, for example, the person gave 9 “B” answers out of 10 total, which is 90%, which means

they end up on the B side which is “Introvert” or I. In the Sensing/iNtuition dimension the person gave 3 “B” answers out

of 20 total, which is 15%, which means they end up on the A side with is “Sensing” or S. The overall scores for this

person are the percentages (90, 15, 10, 10) which works out to a personality type of ISTJ.

Some people will end up with a percentage of 50 in one or more dimensions. This represents a tie, where the person

doesn’t clearly fall on either side. In this case we use the letter “X” to indicate that the person is in the middle for

this particular dimension. The last two entries in the sample input file end up with X’s in their personality type.

http://www.keirsey.com/

Page 2 of 4

Program Behavior:

Take a moment to compare the sample input file and the sample output file and you will see that each pair of lines in the

input file is turned into a single line of output in the output file that reports the person’s name, the list of percentages and

the personality type. You are required to exactly reproduce the format of this output file. You are also required to

reproduce the sample log of execution. You will provide a short introduction and then ask the user for the names of the

input file and output file.

To count the number of A and B answers for each dimension, you need to know something about the structure of the test.

You will get the best results if you take the test without knowing about the structure, so you might want to take the test

before you read what follows. The test has 10 groups of 7 questions with a repeating pattern in each group of 7 questions.

The first question in each group is an Introvert/Extrovert question (questions 1, 8, 15, 22, etc). The next two questions are

for Sensing/iNtuition (questions 2, 3, 9, 10, 16, 17, 23, 24, etc). The next two questions are for Thinking/Feeling

(questions 4, 5, 11, 12, 18, 19, 25, 26, etc). And the final two questions in each group are for Judging/Perceiving

(questions 6, 7, 13, 14, 20, 21, 27, 28, etc). Notice that there are half as many Introvert/Extrovert questions as there are

for the other three dimensions. The seventy letters in the input file appear in question order (first letter for question 1,

second letter for question 2, third letter for question 3, etc).

Remember that the user might leave a question blank, in which case you will find a dash in the input file for that question.

Dash answers are not included in computing the percentages. For example, if for one of the dimensions you have 6 A

answers, 9 B answers and 5 dashes, you would compute the percentage of B answers as 9 of 15, or 60%.

Implementation Guidelines, Hints, and Development Strategy:

The main purpose of this assignment is to demonstrate your understanding of arrays and array traversals with for loops.

Therefore, you should use arrays to store the various data for each sequence. In particular, your answer counts and answer

percentages should be stored using arrays. Additionally, you should use arrays and for loops to transform the data

from one form to another as follows:

 from the answer string to A/B counts; then

 from A/B counts to A/B percentages

You start with a String that has 70 characters in it. You convert that into two sets of counters (how many A answers

for each dimension, how many B answers for each dimension). You convert that into a set of percentages. And you

finally convert that into a String that represents the personality type. If you work through this step by step, the problem

will be easier to solve. The following diagram summarizes the different transformations:

Data Example

String (70 chars) "BABAAAABAAAAAAABAAAABBAAAAAABAAAABABAABAAABABABAABAAAAAABAAAAAABAAAAAA"

↓ ↓

counts of A/B {1, 17, 18, 18}, {9, 3, 2, 2}

↓ ↓

B percentages {90, 15, 10, 10}

↓ ↓

Personality type "ISTJ"

Recall that you can print any array using the method Arrays.toString. For example:

int[] numbers = {10, 20, 30, 40};

System.out.println("my data is " + Arrays.toString(numbers)); // my data is [10, 20, 30, 40]

Notice that the letters “A” and “B” in the sample input file sometimes appear as uppercase letters and sometimes appear

as lowercase letters. Your program must recognize them in either case.

You should round percentages to the nearest integer. You can use the Math.round method to do so, but you will

have to cast the result to an int:

int percent = (int) Math.round(percentage);

Page 3 of 4

You do generate an output file by constructing an object of type PrintStream and writing to it in the same way you

write to System.out (with print and println statements). See section 6.4 of the book for examples. It is a good

idea to send your output to System.out while you are developing your program and send it to the output file only after

you have thoroughly tested your program.

You can read the user’s answers from the input file using nextLine(). This will read an entire line of input and return

it as a String.

You may assume that the input file has no errors. In particular, you may assume that the file exists, that it is composed of

pairs of lines, and that the second line in each pair will have exactly 70 characters that are either A, B or dash (although

the A’s and B’s might be either uppercase or lowercase or a combination). You may also assume that nobody has zero

answers for a given dimension (it would be impossible to determine a percentage in that case).

The sample input and output files provide just a few simple examples of how this program works. We will be using a

much more extensive file for testing your program. As mentioned earlier, we will include data from people in the class to

make this file.

Style Guidelines:

Your program is likely to have the number 4 in several places because of the four dimensions of this test. You should

introduce a class constant to make this more readable instead of using 4 itself. It won’t be possible, however, to

change this constant to some other number and have the program function properly. The constant is helpful for

documentation purposes, but it won’t make the program particularly flexible.

We will grade your method structure strictly on this assignment. Use at least four nontrivial methods besides main.

These methods should use parameters and returns, including arrays, when appropriate. The methods should be well-

structured and avoid redundancy. No one method should do too large a share of the overall task. The textbook's case study

at the end of Chapter 7 is a good example of a larger program with methods that pass arrays as parameters. In particular, we

require that you have one method to compute the A/B counts for a single person and one method to compute the

personality type for a single person.

Your main method should be a concise summary of the overall program. It is okay for main to contain some code such

as println statements. But main should not perform too large a share of the overall work itself, such as examining each

character of an input line. Also avoid "chaining," when many methods call each other without ever returning to main.

We will also check strictly for redundancy on this assignment. If you have a very similar piece of code that is repeated

several times in your program, eliminate the redundancy by creating a method, by using for loops over the elements of

arrays, and/or by factoring if/else code as described in section 4.3 of the textbook.

Since arrays are a key component of this assignment, part of your grade comes from using arrays properly. For

example, you should reduce redundancy by using traversals over arrays (for loops over the array's elements). This is

preferable to writing out a separate statement for each array element (a statement for element [0], then another for [1], then

for [2], etc.). Also carefully consider how arrays should be passed as parameters and/or returned from methods as you are

decomposing your program. Recall that arrays use reference semantics when passed as parameters, meaning that an array

passed to a method can be modified by that method and the changes will be seen by the caller.

You are limited to features in Chapters 1 through 7 of the textbook. Follow all previous style guidelines for indentation,

names, variables, types, line lengths, and comments (at the beginning of your program, on each method, and on complex

sections of code).

Page 4 of 4

Input file personality.txt
Betty Boop

BABAAAABAAAAAAABAAAABBAAAAAABAAAABABAABAAABABABAABAAAAAABAAAAAABAAAAAA

Snoopy

AABBAABBBBBABABAAAAABABBAABBAAAABBBAAABAABAABABAAAABAABBBBAAABBAABABBB

Bugs Bunny

aabaabbabbbaaaabaaaabaaaaababbbaabaaaabaabbbbabaaaabaabaaaaaabbaaaaabb

Daffy Duck

BAAAAA-BAAAABABAAAAAABA-AAAABABAAAABAABAA-BAAABAABAAAAAABA-BAAABA-BAAA

The frumious bandersnatch

-BBaBAA-BBbBBABBBBA-BaBBBBBbbBBABBBBBBABB-BBBaBBABBBBBBB-BABBBBBBBBBBB

Minnie Mouse

BABA-AABABBBAABAABA-ABABAAAB-ABAAAAAA-AAAABAAABAAABAAAAAB-ABBAAAAAAAAA

Luke Skywalker

bbbaaabbbbaaba-BAAAABBABBAAABBAABAAB-AAAAABBBABAABABA-ABBBABBABAA-AAAA

Han Solo

BA-ABABBB-bbbaababaaaabbaaabbaaabbabABBAAABABBAAABABAAAABBABAAABBABAAB

Princess Leia

BABBAAABBBBAAABBA-AAAABABBABBABBAAABAABAAABBBA-AABAABAAAABAAAAABABBBAA

Output file for personality.txt
Betty Boop: [90, 15, 10, 10] = ISTJ

Snoopy: [30, 45, 30, 70] = ESTP

Bugs Bunny: [20, 45, 15, 55] = ESTP

Daffy Duck: [100, 6, 20, 6] = ISTJ

The frumious bandersnatch: [86, 95, 75, 78] = INFP

Minnie Mouse: [67, 28, 32, 5] = ISTJ

Luke Skywalker: [89, 61, 26, 25] = INTJ

Han Solo: [80, 50, 45, 25] = IXTJ

Princess Leia: [80, 50, 50, 5] = IXXJ

Sample log (user input bold and underlined)
This program processes a file of answers to the

Keirsey Temperament Sorter. It converts the

various A and B answers for each person into

a sequence of B-percentages and then into a

four-letter personality type.

input file name? personality.txt

output file name? output.txt

