
1

Building Java Programs

Chapter 5
Lecture 5-2: Random Numbers; procedural design

reading: 5.1, 5.6, 4.5
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http://xkcd.com/221/
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The Random class

 A Random object generates pseudo-random numbers.

 Class Random is found in the java.util package.

import java.util.*;

 Example:

Random rand = new Random();

int randomNumber = rand.nextInt(10);   // 0-9

Method name Description

nextInt() returns a random integer

nextInt(max) returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

nextDouble() returns a random real number in the range [0.0, 1.0)



4

Generating random numbers
 Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1;   // 1-20 inclusive

 To get a number in arbitrary range [min, max] inclusive:

name.nextInt(size of range) + min

 Where size of range is (max - min + 1)

 Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;
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Random questions

 Given the following declaration, how would you get:

Random rand = new Random();

 A random number between 1 and 47 inclusive?

int random1 = rand.nextInt(47) + 1;

 A random number between 23 and 30 inclusive?

int random2 = rand.nextInt(8) + 23;

 A random even number between 4 and 12 inclusive?

int random3 = rand.nextInt(5) * 2 + 4;
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Random and other types

 nextDouble method returns a double between [0.0, 1.0)

 Example: Get a random GPA value between [1.5,  4.0):

double randomGpa = rand.nextDouble() * 2.5 + 1.5;

 Any set of possible values can be mapped to integers

 code to randomly play Rock-Paper-Scissors:

int r = rand.nextInt(3);

if (r == 0) {

System.out.println("Rock");

} else if (r == 1) {

System.out.println("Paper");

} else {  // r == 2

System.out.println("Scissors");

}
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Random question

 Write a program that simulates rolling two 6-sided dice 
until their combined result comes up as 7.

2 + 4 = 6

3 + 5 = 8

5 + 6 = 11

1 + 1 = 2

4 + 3 = 7

You won after 5 tries!
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Random answer
// Rolls two dice until a sum of 7 is reached.

import java.util.*;

public class Dice {

public static void main(String[] args) {

Random rand = new Random();

int tries = 0;

int sum = 0;  // anything but 7 to start the loop

while (sum != 7) {

// roll the dice once

int roll1 = rand.nextInt(6) + 1;

int roll2 = rand.nextInt(6) + 1;

sum = roll1 + roll2;

System.out.println(roll1 + " + " + roll2 + " = " + sum);

tries++;

}

System.out.println("You won after " + tries + " tries!");

}

}
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Random question

 Write a program that plays an adding game.

 Ask user to solve random adding problems with 2-5 numbers 
in the range from 1 - 10.

 The user gets 1 point for a correct answer, 0 for incorrect.

 The program stops after 3 incorrect answers.

4 + 10 + 3 + 10 = 27

9 + 2 = 11

8 + 6 + 7 + 9 = 25

Wrong! The answer was 30

5 + 9 = 13

Wrong! The answer was 14

4 + 9 + 9 = 22

3 + 1 + 7 + 2 = 13

4 + 2 + 10 + 9 + 7 = 42

Wrong! The answer was 32

You earned 4 total points
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Random answer
// Asks the user to do adding problems and scores them.

import java.util.*;

public class AddingGame {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

Random rand = new Random();

// play until user gets 3 wrong

int points = 0;

int wrong = 0;

while (wrong < 3) {

int result = play(console, rand);   // play one game

if (result == 0) {

wrong++;

} else {

points++;

}

}

System.out.println("You earned " + points + " total points.");

}



11

Random answer 2
...

// Builds one addition problem and presents it to the user.

// Returns 1 point if you get it right, 0 if wrong.

public static int play(Scanner console, Random rand) {

// print the operands being added, and sum them

int operands = rand.nextInt(4) + 2;

int sum = rand.nextInt(10) + 1;

System.out.print(sum);

for (int i = 2; i <= operands; i++) {

int n = rand.nextInt(10) + 1;

sum += n;

System.out.print(" + " + n);

}

System.out.print(" = ");

// read user's guess and report whether it was correct

int guess = console.nextInt();

if (guess == sum) {

return 1;

} else {

System.out.println("Wrong! The answer was " + total);

return 0;

}

}

}



Procedural design

reading: 4.5
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Recall: BMI program
Formula for body mass index (BMI):

 Write a program that produces output like the following:
This program reads data for two people and
computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572
overweight
Person 2 BMI = 23.485824
normal
Difference = 4.3831045714285715

703
2


height

weight
BMI

BMI Weight class

below 18.5 underweight

18.5 - 24.9 normal

25.0 - 29.9 overweight

30.0 and up obese
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"Chaining"
 main should be a concise summary of your program.

 It is bad if each method calls the next without ever returning 
(we call this chaining):

 A better structure has main make most of the calls.

 Methods must return values to main to be passed on later.

main
methodA

methodB
methodC

methodD

main
methodA

methodB
methodC

methodD
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Bad "chain" code
public class BMI {

public static void main(String[] args) {

System.out.println("This program reads ... (etc.)");

Scanner console = new Scanner(System.in);

person(console);
}

public static void person(Scanner console) {

System.out.println("Enter next person's information:");

System.out.print("height (in inches)? ");

double height = console.nextDouble();

getWeight(console, height);
}

public static void getWeight(Scanner console, double height) {

System.out.print("weight (in pounds)? ");

double weight = console.nextDouble();

computeBMI(console, height, weight);
}

public static void computeBMI(Scanner s, double h, double w) {

...

}

}
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Procedural heuristics
1. Each method should have a clear set of responsibilities.

2. No method should do too large a share of the overall task.

3. Minimize coupling and dependencies between methods.

4. The main method should read as a concise summary of 
the overall set of tasks performed by the program.

5. Data should be declared/used at the lowest level possible.


