
1

Building Java Programs

Chapter 5
Lecture 5-2: Random Numbers; procedural design

reading: 5.1, 5.6, 4.5

2

http://xkcd.com/221/

http://xkcd.com/221/

3

The Random class

 A Random object generates pseudo-random numbers.

 Class Random is found in the java.util package.

import java.util.*;

 Example:

Random rand = new Random();

int randomNumber = rand.nextInt(10); // 0-9

Method name Description

nextInt() returns a random integer

nextInt(max) returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

nextDouble() returns a random real number in the range [0.0, 1.0)

4

Generating random numbers
 Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1; // 1-20 inclusive

 To get a number in arbitrary range [min, max] inclusive:

name.nextInt(size of range) + min

 Where size of range is (max - min + 1)

 Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;

5

Random questions

 Given the following declaration, how would you get:

Random rand = new Random();

 A random number between 1 and 47 inclusive?

int random1 = rand.nextInt(47) + 1;

 A random number between 23 and 30 inclusive?

int random2 = rand.nextInt(8) + 23;

 A random even number between 4 and 12 inclusive?

int random3 = rand.nextInt(5) * 2 + 4;

6

Random and other types

 nextDouble method returns a double between [0.0, 1.0)

 Example: Get a random GPA value between [1.5, 4.0):

double randomGpa = rand.nextDouble() * 2.5 + 1.5;

 Any set of possible values can be mapped to integers

 code to randomly play Rock-Paper-Scissors:

int r = rand.nextInt(3);

if (r == 0) {

System.out.println("Rock");

} else if (r == 1) {

System.out.println("Paper");

} else { // r == 2

System.out.println("Scissors");

}

7

Random question

 Write a program that simulates rolling two 6-sided dice
until their combined result comes up as 7.

2 + 4 = 6

3 + 5 = 8

5 + 6 = 11

1 + 1 = 2

4 + 3 = 7

You won after 5 tries!

8

Random answer
// Rolls two dice until a sum of 7 is reached.

import java.util.*;

public class Dice {

public static void main(String[] args) {

Random rand = new Random();

int tries = 0;

int sum = 0; // anything but 7 to start the loop

while (sum != 7) {

// roll the dice once

int roll1 = rand.nextInt(6) + 1;

int roll2 = rand.nextInt(6) + 1;

sum = roll1 + roll2;

System.out.println(roll1 + " + " + roll2 + " = " + sum);

tries++;

}

System.out.println("You won after " + tries + " tries!");

}

}

9

Random question

 Write a program that plays an adding game.

 Ask user to solve random adding problems with 2-5 numbers
in the range from 1 - 10.

 The user gets 1 point for a correct answer, 0 for incorrect.

 The program stops after 3 incorrect answers.

4 + 10 + 3 + 10 = 27

9 + 2 = 11

8 + 6 + 7 + 9 = 25

Wrong! The answer was 30

5 + 9 = 13

Wrong! The answer was 14

4 + 9 + 9 = 22

3 + 1 + 7 + 2 = 13

4 + 2 + 10 + 9 + 7 = 42

Wrong! The answer was 32

You earned 4 total points

10

Random answer
// Asks the user to do adding problems and scores them.

import java.util.*;

public class AddingGame {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

Random rand = new Random();

// play until user gets 3 wrong

int points = 0;

int wrong = 0;

while (wrong < 3) {

int result = play(console, rand); // play one game

if (result == 0) {

wrong++;

} else {

points++;

}

}

System.out.println("You earned " + points + " total points.");

}

11

Random answer 2
...

// Builds one addition problem and presents it to the user.

// Returns 1 point if you get it right, 0 if wrong.

public static int play(Scanner console, Random rand) {

// print the operands being added, and sum them

int operands = rand.nextInt(4) + 2;

int sum = rand.nextInt(10) + 1;

System.out.print(sum);

for (int i = 2; i <= operands; i++) {

int n = rand.nextInt(10) + 1;

sum += n;

System.out.print(" + " + n);

}

System.out.print(" = ");

// read user's guess and report whether it was correct

int guess = console.nextInt();

if (guess == sum) {

return 1;

} else {

System.out.println("Wrong! The answer was " + total);

return 0;

}

}

}

Procedural design

reading: 4.5

13

Recall: BMI program
Formula for body mass index (BMI):

 Write a program that produces output like the following:
This program reads data for two people and
computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572
overweight
Person 2 BMI = 23.485824
normal
Difference = 4.3831045714285715

703
2

height

weight
BMI

BMI Weight class

below 18.5 underweight

18.5 - 24.9 normal

25.0 - 29.9 overweight

30.0 and up obese

14

"Chaining"
 main should be a concise summary of your program.

 It is bad if each method calls the next without ever returning
(we call this chaining):

 A better structure has main make most of the calls.

 Methods must return values to main to be passed on later.

main
methodA

methodB
methodC

methodD

main
methodA

methodB
methodC

methodD

15

Bad "chain" code
public class BMI {

public static void main(String[] args) {

System.out.println("This program reads ... (etc.)");

Scanner console = new Scanner(System.in);

person(console);
}

public static void person(Scanner console) {

System.out.println("Enter next person's information:");

System.out.print("height (in inches)? ");

double height = console.nextDouble();

getWeight(console, height);
}

public static void getWeight(Scanner console, double height) {

System.out.print("weight (in pounds)? ");

double weight = console.nextDouble();

computeBMI(console, height, weight);
}

public static void computeBMI(Scanner s, double h, double w) {

...

}

}

16

Procedural heuristics
1. Each method should have a clear set of responsibilities.

2. No method should do too large a share of the overall task.

3. Minimize coupling and dependencies between methods.

4. The main method should read as a concise summary of
the overall set of tasks performed by the program.

5. Data should be declared/used at the lowest level possible.

