
CSE142 Sample Final Exam

Autumn 2018

1. Reference Mystery, 5 points. The following program produces 5 lines of output.

 Write the output below, exactly as it would appear on the console.

 import java.util.*;

 public class ReferenceMystery {

 public static void main(String[] args) {

 int x = 1;

 int y = 7;

 int[] data = {2, 4, 6};

 System.out.println(x + " " + y + " " + Arrays.toString(data));

 mystery1(x, y);

 System.out.println(x + " " + y);

 x = mystery2(data[x], data);

 System.out.println(x + " " + y + " " + Arrays.toString(data));

 }

 public static void mystery1(int x, int y) {

 y++;

 x = x / y;

 System.out.println(x + " " + y);

 }

 public static int mystery2(int z, int[] numbers) {

 z = z * 4;

 numbers[z % 2]++;

 z = -1;

 numbers[z + 1]--;

 System.out.println(z + " " + Arrays.toString(numbers));

 return 5;

 }

 }

2. Array Simulation, 10 points. You are to simulate the execution of a method

 that manipulates an array of integers. Consider the following method:

 public static void mystery(int[] list) {

 for (int i = 1; i < list.length; i++) {

 if (list[i - 1] % 2 == 0) {

 list[i - 1]++;

 list[i]++;

 }

 }

 }

In the left-hand column below are specific arrays of integers. You are to

indicate in the right-hand column what values would be stored in the array

after method mystery executes if the integer array in the left-hand column

is passed as a parameter to mystery.

 Original Array Final Array

 -------------- ----------------------------

 [10, 10, 10] ____________________________

 [2, 3, 4, 5] ____________________________

 [3, 4, 5, 7, 9] ____________________________

 [2, 3, 5, 7, 9] ____________________________

 [4] ____________________________

3. Inheritance Mystery, 6 points. Consider the following classes:

 public class Stew extends Soup { Given the classes to the left,

 public void method2() { write the output produced by

 System.out.print("stew 2 "); the client code exactly as it

 method1(); would appear on the console.

 }

 }

 public class Soup {

 public void method1() {

 System.out.print("soup 1 ");

 }

 public void method2() {

 System.out.print("soup 2 ");

 }

 public String toString() {

 return "soup";

 }

 }

 public class Chowder extends Soup {

 public void method1() {

 method2();

 System.out.print("chowder 1 ");

 }

 public String toString() {

 return "chowder";

 }

 }

 public class Chili extends Stew {

 public void method1() {

 System.out.print("chili 1 ");

 }

 public String toString() {

 return "chili";

 }

 }

 // client code

 public static void main(String[] args) {

 Soup[] bowl = { new Stew(), new Soup(),

 new Chowder(), new Chili() };

 for (int i = 0; i < bowl.length; i++) {

 System.out.println(bowl[i]);

 bowl[i].method1();

 System.out.println();

 bowl[i].method2();

 System.out.println();

 System.out.println();

 }

 }

4. File Processing, 9 points. Write a static method named countCoins that accepts

 as its parameter a Scanner for an input file whose data represents a person's

 money grouped into stacks of coins. Your method should add up the cash values

 of all the coins and print the total money at the end. The input consists of a

 series of pairs of tokens, where each pair begins with an integer and is

 followed by the type of coin, which will be either "pennies" (1 cent each),

 "nickels" (5 cents each), "dimes" (10 cents each), or "quarters" (25 cents

 each), case-insensitively. A given coin might appear more than once on the

 same line.

 For example, suppose the input file contains the following text:

 3 pennies 2 quarters 1 pennies 3 nickels 4 dimes

 Three pennies are worth 3 cents, 2 quarters are worth 50 cents, 1 penny is

 worth 1 cent, 3 nickels are worth 15 cents, and 4 dimes are worth 40 cents.

 The total of these is 1 dollar and 9 cents, therefore your method would produce

 the following output if passed this input data. Notice that it says 09 for 9

 cents.

 Total money: $1.09

 Here is a second example. Suppose the input file contains the following text

 (notice the capitalization and spacing):

 12 QUARTERS 1 Pennies 33

 PeNnIeS

 10

 niCKELs

 Then your method would produce the following output:

 Total money: $3.84

 You may assume that the file contains at least one pair of tokens. You may also

 assume that the input is valid; that the input has an even number of tokens,

 that every other token is a positive integer, that the remaining tokens are

 valid coin types.

5. File Processing, 10 points. Write a static method gradeQuiz that takes as its

 parameter a Scanner containing the questions and correct answers for a quiz along with

 a particular student's responses. Your method should determine whether or not the

 student correctly answered each question and then print out the student's final score.

 Each question in the input file will be represented by three lines. The first line

 will contain the question, the second line will contain the correct answer, and the

 third line will contain the student's response. A student's response is considered

 correct if it matches the correct answer, case-insensitively.

 For example, suppose the input contains the following text:

 Who is the CSE 142 instructor?

 Brett Wortzman

 Brett

 What language is taught in CSE 142?

 Java

 JAVA

 What is the best drink in the world?

 Coffee

 coffee

 Is a poptart a sandwich?

 No

 NO

 Is an oreo a sandwich?

 No

 yes

 This quiz contained 5 questions, and the student got the second, third, and fourth

 questions correct. In this case, your method would produce the following output:

 Question 1: Who is the CSE 142 instructor?

 Student's response: Brett

 Correct answer: Brett Wortzman

 Incorrect. :-(

 Question 2: What language is taught in CSE 142?

 Student's response: JAVA

 Correct answer: Java

 Correct!

 Question 3: What is the best drink in the world?

 Student's response: coffee

 Correct answer: Coffee

 Correct!

 Question 4: Is a poptart a sandwich?

 Student's response: NO

 Correct answer: No

 Correct!

 Question 5: Is an oreo a sandwich?

 Student's response: yes

 Correct answer: No

 Incorrect. :-(

 3/5 questions answered correctly.

 You may assume that the input file contains text representing at least one question,

 that the number of lines in the input file is a multiple of three, and that the file

 has the format specified above. You should output the question, correct answer, and

 student response exactly as they appear in the input file.

6. Arrays, 10 points. Write a static method named range that accepts an array of

 ints as a parameter and returns the range of values in the array. The range is

 defined as the difference between the largest value and the smallest value.

 For example, if a variable called arr stores the following array:

 [1, 4, 2, -1, 8]

 the call range(arr) would return 9 (the difference of 8, the largest value

 and -1, the smallest value).

 You may assume the given array is not null and that it contains at least one

 element. Your method must not modify the contents of the array.

7. Classes, 10 points. Suppose that you are provided with a pre-written class

 ClockTime as described below. Assume that the fields, constructor, and methods

 shown are implemented. You may refer to them or use them in solving this problem.

 // A ClockTime object represents an hour:minute time during

 // the day or night, such as 10:45 AM or 6:27 PM.

 public class ClockTime {

 private int hour;

 private int minute;

 private String amPm;

 // Constructs a new time for the given hour/minute

 public ClockTime(int h, int m, String ap) { /* implementation omitted */ }

 // returns the field values

 public int getHour() { /* implementation omitted */ }

 public int getMinute() { /* implementation omitted */ }

 public String getAmPm() { /* implementation omitted */ }

 // returns String for time; for example: "6:27 PM"

 public String toString() { /* implementation omitted */ }

 // advances this ClockTime by the given # of minutes

 public void advance(int m) { /* implementation omitted */ }

 // your method will go here

 }

 Write an instance method named isLaterThan that will be placed inside the

 ClockTime class. The isLaterThan method takes another ClockTime object as a

 parameter and returns true if this ClockTime represents a time later in the day

 than the ClockTime object passed in. If the object passed is later in the day,

 or if the two times are the same, the method returns false.

 For example, suppose the following objects are declared in client code:

 ClockTime t1 = new ClockTime(8, 30, "AM");

 ClockTime t2 = new ClockTime(1, 15, "PM");

 ClockTime t3 = new ClockTime(9, 30, "AM");

 ClockTime t4 = new ClockTime(9, 0, "AM");

 ClockTime t5 = new ClockTime(8, 40, "AM");

 ClockTime noon = new ClockTime(12, 0, "PM");

 ClockTime mid = new ClockTime(12, 0, "AM");

 The table below indicates the return value for various calls to isLaterThan:

 Call Return Value

 --

 t1.isLaterThan(t2) false

 t1.isLaterThan(t3) false

 t1.isLaterThan(t4) false

 t1.isLaterThan(t5) false

 t2.isLaterThan(t1) true

 t2.isLaterThan(t4) true

 t3.isLaterThan(t4) true

 t1.isLaterThan(noon) false

 t1.isLaterThan(mid) true

 t2.isLaterThan(noon) true

 t2.isLaterThan(mid) true

 noon.isLaterThan(mid) true

 t1.isLaterThan(t1) false

 Your method should not modify the state of either ClockTime object. You may

 assume that the state of both ClockTime objects is valid at the start of the

 call, and that both amPm fields store either "AM" or "PM".

8. Critters, 15 points. Write a class named Wombat that extends the Critter class from

 homework 8. Write the complete class with any fields, constructors, etc. that are

 necessary. All unspecified aspects of Wombats use the default behavior.

 Wombats burrow by moving in a southward pattern, going north every third move

 to get dirt out of their way. Their overall movement pattern is S, S, N, S, S,

 N, S, S, N, S, S, N, etc.

 A Wombat roars when it gets into a fight with something that looks like an Ant

 (displayed as a "%"). When fighting any other kind of Critter, a Wombat

 pounces. After winning a fight, a Wombat takes on the appearance of its

 defeated opponent. For example, if a Wombat fights an Ant and wins, it will

 then be displayed as "%" until it fights again. When Wombats are first created

 and haven’t fought yet, they are displayed as "?".

 When a Wombat encounters food, it randomly chooses whether or not to eat. Each time a

 Wombat encounters food, it should have a 2/3 chance of not eating and a 1/3 chance of

 eating, regardless of whether or not it previously ate.

9. Arrays, 15 points. Write a static method named compressTriplets that accepts an array

 of integers as a parameter and returns a new array of integers containing the sums of

 each successive set of three integers in the original array. If the given array has a

 length that is not a multiple of 3, the last sum in the returned array should be that

 of the remaining values.

 Below are example arrays and the expected returned array after calling

 compressTriplets:

 contents of int[] arr result of compressTriplets(arr)

 [0, 3, 1, 2, 4, 3] [4, 9]

 [0, 3, 1, 2, 4, 3, -8] [4, 9, -8]

 [0, 3, 1, 2, 4, 3, -8, 3] [4, 9, -5]

 [1] [1]

 [] []

 You may assume the given array is not null. Your method must not modify the contents

 of the original array and must not construct any data structures except for a single

 integer array.

10. Programming, 10 points. Write a static method called count that takes as

 parameters a target string and a source string and that returns a count of the

 number of occurrences of the target string in the source string, regardless of

 casing. For example, the call:

 count("i", "Mississippi")

 would return 4 because there are 4 occurrences of the string "i" in the string

 "Mississippi". The call:

 count("iss", "MISSISSIPPI")

 would return 2 because there are two occurrences of "iss" in "MISSISSIPPI".

 Your method should consider all possible starting positions for the target

 string. For example, the call:

 count("EE", "EeEeE")

 would return the value 4 because there are 4 different locations where the

 string "ee" occurs in the string "EeEeE" (starting at index 0, index 1,

 index 2, and index 3).

 You may assume that the both the source and target strings are not empty.

