
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9
Inheritance, Polymorphism;

reading: 9.2

Copyright 2008 by Pearson Education
2

Copyright 2008 by Pearson Education
3

The software crisis
� software engineering: The practice of developing,

designing, documenting, testing large computer
programs.

� Large-scale projects face many issues:
� programmers working together
� getting code finished on time
� avoiding redundant code
� finding and fixing bugs
� maintaining, reusing existing code

� code reuse: The practice of writing program code once
and using it in many contexts.

Copyright 2008 by Pearson Education
4

Law firm employee analogy
� common rules: hours, vacation, benefits, regulations ...

� all employees attend a common orientation to learn general
company rules

� each employee receives a 20-page manual of common rules

� each subdivision also has specific rules:
� employee receives a smaller (1-3 page) manual of these rules
� smaller manual adds some new rules and also changes some

rules from the large manual

Copyright 2008 by Pearson Education
5

Separating behavior
� Why not just have a 22 page Lawyer manual, a 21-page

Secretary manual, a 23-page Marketer manual, etc.?

� Some advantages of the separate manuals:
� maintenance: Only one update if a common rule changes.
� locality: Quick discovery of all rules specific to lawyers.

� Some key ideas from this example:
� General rules are useful (the 20-page manual).
� Specific rules that may override general ones are also useful.

Copyright 2008 by Pearson Education
6

Is-a relationships, hierarchies
� is-a relationship: A hierarchical connection where one

category can be treated as a specialized version of
another.
� every marketer is an employee
� every legal secretary is a secretary

� inheritance hierarchy: A set of classes connected by is-
a relationships that can share common code.

Copyright 2008 by Pearson Education
7

Employee regulations
� Consider the following employee regulations:

� Employees work 40 hours / week.
� Employees make $40,000 per year, except legal secretaries who

make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

� Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

� Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

� Each type of employee has some unique behavior:
� Lawyers know how to sue.
� Marketers know how to advertise.
� Secretaries know how to take dictation.
� Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education
8

An Employee class
// A class to represent employees in general (20-page manual).
public class Employee {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {
return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow"; // use the yellow form

}
}

� Exercise: Implement class Secretary, based on the previous
employee regulations. (Secretaries can take dictation.)

Copyright 2008 by Pearson Education
9

Redundant Secretary class
// A redundant class to represent secretaries.
public class Secretary {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {
return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow"; // use the yellow form

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + text);

}
}

Copyright 2008 by Pearson Education
10

Desire for code-sharing
� takeDictation is the only unique behavior in Secretary.

� We'd like to be able to say:

// A class to represent secretaries.
public class Secretary {

copy all the contents from the Employee class;

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + text);

}
}

Copyright 2008 by Pearson Education
11

Inheritance
� inheritance: A way to form new classes based on

existing classes, taking on their attributes/behavior.
� a way to group related classes
� a way to share code between two or more classes

� One class can extend another, absorbing its
data/behavior.
� superclass: The parent class that is being extended.
� subclass: The child class that extends the superclass and

inherits its behavior.
� Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education
12

Inheritance syntax
public class name extends superclass {

� Example:

public class Secretary extends Employee {

...

}

� By extending Employee, each Secretary object now:
� receives a getHours, getSalary, getVacationDays, and
getVacationFormmethod automatically

� can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education
13

Improved Secretary code
// A class to represent secretaries.
public class Secretary extends Employee {

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + text);

}
}

� Now we only write the parts unique to each type.
� Secretary inherits getHours, getSalary, getVacationDays,

and getVacationFormmethods from Employee.
� Secretary adds the takeDictation method.

Copyright 2008 by Pearson Education
14

Implementing Lawyer
� Consider the following lawyer regulations:

� Lawyers who get an extra week of paid vacation (a total of 3).
� Lawyers use a pink form when applying for vacation leave.
� Lawyers have some unique behavior: they know how to sue.

� Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new
behavior.

Copyright 2008 by Pearson Education
15

Overriding methods
� override: To write a new version of a method in a

subclass that replaces the superclass's version.
� No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee class
public String getVacationForm() {

return "pink";
}
...

}

� Exercise: Complete the Lawyer class.
� (3 weeks vacation, pink vacation form, can sue)

Copyright 2008 by Pearson Education
16

Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {

// overrides getVacationForm from Employee class
public String getVacationForm() {

return "pink";
}

// overrides getVacationDays from Employee class
public int getVacationDays() {

return 15; // 3 weeks vacation
}

public void sue() {
System.out.println("I'll see you in court!");

}
}

� Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

Copyright 2008 by Pearson Education
17

Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return 50000.0; // $50,000.00 / year

}
}

Copyright 2008 by Pearson Education
18

Levels of inheritance
� Multiple levels of inheritance in a hierarchy are allowed.

� Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

public class LegalSecretary extends Secretary {

...

}

� Exercise: Complete the LegalSecretary class.

Copyright 2008 by Pearson Education
19

LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {

public void fileLegalBriefs() {
System.out.println("I could file all day!");

}

public double getSalary() {
return 45000.0; // $45,000.00 / year

}
}

Copyright 2008 by Pearson Education

Interacting with the
Superclass (super)

reading: 9.2

Copyright 2008 by Pearson Education
21

Changes to common behavior
� Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
� The base employee salary is now $50,000.
� Legal secretaries now make $55,000.
� Marketers now make $60,000.

� We must modify our code to reflect this policy change.

Copyright 2008 by Pearson Education
22

Modifying the superclass
// A class to represent employees in general (20-page manual).
public class Employee {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 50000.0; // $50,000.00 / year

}

...
}

� Are we finished?

� The Employee subclasses are still incorrect.
� They have overridden getSalary to return other values.

Copyright 2008 by Pearson Education
23

An unsatisfactory solution
public class LegalSecretary extends Secretary {

public double getSalary() {
return 55000.0;

}
...

}

public class Marketer extends Employee {
public double getSalary() {

return 60000.0;
}
...

}

� Problem: The subclasses' salaries are based on the Employee
salary, but the getSalary code does not reflect this.

Copyright 2008 by Pearson Education
24

Calling overridden methods
� Subclasses can call overridden methods with super

super.method(parameters)

� Example:
public class LegalSecretary extends Secretary {

public double getSalary() {
double baseSalary = super.getSalary();
return baseSalary + 5000.0;

}
...

}

Copyright 2008 by Pearson Education
25

Inheritance and constructors
� Imagine that we want to give employees more vacation

days the longer they've been with the company.
� For each year worked, we'll award 2 additional vacation days.

� When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

� This will require us to modify our Employee class and add
some new state and behavior.

� Exercise: Make necessary modifications to the Employee class.

Copyright 2008 by Pearson Education
26

Modified Employee class
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getHours() {
return 40;

}

public double getSalary() {
return 50000.0;

}

public int getVacationDays() {
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

}
}

Copyright 2008 by Pearson Education
27

Problem with constructors
� Now that we've added the constructor to the Employee

class, our subclasses do not compile. The error:
Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee
public class Lawyer extends Employee {

^

� The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

� The long explanation: (next slide)

Copyright 2008 by Pearson Education
28

The detailed explanation
� Constructors are not inherited.

� Subclasses don't inherit the Employee(int) constructor.

� Subclasses receive a default constructor that contains:

public Lawyer() {
super(); // calls Employee() constructor

}

� But our Employee(int) replaces the default Employee().
� The subclasses' default constructors are now trying to call a

non-existent default Employee constructor.

Copyright 2008 by Pearson Education
29

Calling superclass constructor
super(parameters);

� Example:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years); // calls Employee constructor

}
...

}

� The super call must be the first statement in the constructor.

� Exercise: Make a similar modification to the Marketer class.

Copyright 2008 by Pearson Education
30

Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public Marketer(int years) {
super(years);

}

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

� Exercise: Modify the Secretary subclass.
� Secretaries' years of employment are not tracked.
� They do not earn extra vacation for years worked.

Copyright 2008 by Pearson Education
31

Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {

public Secretary() {
super(0);

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + text);

}
}

� Since Secretarydoesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.

� Its default constructor calls the Secretary() constructor.

Copyright 2008 by Pearson Education
32

Inheritance and fields
� Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {
...
public double getSalary() {

return super.getSalary() + 5000 * years;
}
...

}

� Does not work; the error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^

� Private fields cannot be directly accessed from
subclasses.
� One reason: So that subclassing can't break encapsulation.
� How can we get around this limitation?

Copyright 2008 by Pearson Education
33

Improved Employee code
Add an accessor for any field needed by the subclass.
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getYears() {
return years;

}
...

}
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);

}

public double getSalary() {
return super.getSalary() + 5000 * getYears();

}
...

}

Copyright 2008 by Pearson Education
34

Revisiting Secretary
� The Secretary class currently has a poor solution.

� We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

� If we call getYears on a Secretaryobject, we'll always get 0.
� This isn't a good solution; what if we wanted to give some

other reward to all employees based on years of service?

� Redesign our Employee class to allow for a better
solution.

Copyright 2008 by Pearson Education
35

Improved Employee code
• Let's separate the standard 10 vacation days from those

that are awarded based on seniority.
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getVacationDays() {
return 10 + getSeniorityBonus();

}

// vacation days given for each year in the company
public int getSeniorityBonus() {

return 2 * years;
}
...

}

� How does this help us improve the Secretary?

Copyright 2008 by Pearson Education
36

Improved Secretary code
• Secretary can selectively override getSeniorityBonus;

when getVacationDays runs, it will use the new version.
� Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {

super(years);
}

// Secretaries don't get a bonus for their years of service.
public int getSeniorityBonus() {

return 0;
}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + text);

}
}

Copyright 2008 by Pearson Education
37

Copyright 2008 by Pearson Education
38

Copyright 2008 by Pearson Education

Homework 8:
Critters

reading: HW8 spec

Copyright 2008 by Pearson Education
40

CSE 142 Critters
� Ant
� Bird
� Hippo
� Vulture
� Husky (creative)

� behavior:
� eat eating food
� fight animal fighting
� getColor color to display
� getMove movement
� toString letter to display

Copyright 2008 by Pearson Education
41

A Critter subclass
public class name extends Critter { ... }

public abstract class Critter {
public boolean eat()
public Attack fight(String opponent)

// ROAR, POUNCE, SCRATCH
public Color getColor()
public Direction getMove()

// NORTH, SOUTH, EAST, WEST, CENTER
public String toString()

}

Copyright 2008 by Pearson Education
42

How the simulator works
� "Go" →		loop:

� move each animal (getMove)
� if they collide, fight
� if they find food, eat

� Simulator is in control!
� getMove is one move at a time

� (no loops)

� Keep state (fields)
� to remember future moves

%

Next	
move?

Copyright 2008 by Pearson Education
43

Development Strategy
� Do one species at a time

� in ABC order from easier to harder (Ant → Bird → ...)
� debug printlns

� Simulator helps you debug
� smaller width/height
� fewer animals
� "Tick" instead of "Go"
� "Debug" checkbox
� drag/drop to move animals

Copyright 2008 by Pearson Education
44

Critter exercise: Cougar
� Write a critter class Cougar:

Method Behavior
constructor public Cougar()

eat Always eats.
fight Always pounces.
getColor Blue if the Cougar has never fought; red if he

has.
getMove Walks west until he finds food; then walks east

until he finds food; then goes west and
repeats.

toString "C"

Copyright 2008 by Pearson Education
45

Ideas for state
� You must not only have the right state, but update that

state properly when relevant actions occur.

� Counting is helpful:
� How many total moves has this animal made?
� How many times has it eaten? Fought?

� Remembering recent actions in fields is helpful:
� Which direction did the animal move last?

� How many times has it moved that way?

� Did the animal eat the last time it was asked?
� How many steps has the animal taken since last eating?
� How many fights has the animal been in since last eating?

Copyright 2008 by Pearson Education
46

Cougar solution
import java.awt.*; // for Color

public class Cougar extends Critter {
private boolean west;
private boolean fought;

public Cougar() {
west = true;
fought = false;

}

public boolean eat() {
west = !west;
return true;

}

public Attack fight(String opponent) {
fought = true;
return Attack.POUNCE;

}

...

Copyright 2008 by Pearson Education
47

Cougar solution
...

public Color getColor() {
if (fought) {

return Color.RED;
} else {

return Color.BLUE;
}

}

public Direction getMove() {
if (west) {

return Direction.WEST;
} else {

return Direction.EAST;
}

}

public String toString() {
return "C";

}
}

Copyright 2008 by Pearson Education
48

Critter exercise: Snake
Method Behavior

constructo
r

public Snake()

eat Never eats
fight always forfeits
getColor black
getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5 E,

...
toString "S"

Copyright 2008 by Pearson Education
49

Determining necessary fields
� Information required to decide what move to make?

� Direction to go in
� Length of current cycle
� Number of moves made in current cycle

� Remembering things you've done in the past:
� an int counter?
� a boolean flag?

Copyright 2008 by Pearson Education
50

Snake solution
import java.awt.*; // for Color
public class Snake extends Critter {

private int length; // # steps in current horizontal cycle
private int step; // # of cycle's steps already taken
public Snake() {

length = 1;
step = 0;

}

public Direction getMove() {
step++;
if (step > length) { // cycle was just completed

length++;
step = 0;
return Direction.SOUTH;

} else if (length % 2 == 1) {
return Direction.EAST;

} else {
return Direction.WEST;

}
}

public String toString() {
return "S";

}
}

