
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Classes and Objects

reading: 8.1 - 8.2

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

A programming problem
� Given a file of cities' (x, y) coordinates,

which begins with the number of cities:
6
50 20
90 60
10 72
74 98
5 136
150 91

� Write a program to draw the cities on a DrawingPanel, then
simulates an earthquake that turns all cities red that are within a
given radius:
Epicenter x? 100
Epicenter y? 100
Affected radius? 75

Copyright 2010 by Pearson Education
4

A bad solution

Scanner input = new Scanner(new File("cities.txt"));
int cityCount = input.nextInt();
int[] xCoords = new int[cityCount];
int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {
xCoords[i] = input.nextInt(); // read each city
yCoords[i] = input.nextInt();

}
...

�parallel arrays: 2+ arrays with related data at same indexes.
� Considered poor style.

Copyright 2010 by Pearson Education
5

Observations
� The data in this problem is a set of points.
� It would be better stored as Point objects.

� A Point would store a city's x/y data.

� We could compare distances between Points
to see whether the earthquake hit a given city.

� Each Point would know how to draw itself.

� The overall program would be shorter and cleaner.

Copyright 2010 by Pearson Education
6

Objects
� object: An entity that contains data and behavior.

� data: variables inside the object
� behavior: methods inside the object

� You interact with the methods;
the data is hidden in the object.

� A class is a type of objects.

� Constructing (creating) an object:
Type objectName = new Type(parameters);

� Calling an object's method:
objectName.methodName(parameters);

Copyright 2010 by Pearson Education
7

Clients of objects
� client program: A program that uses objects.

� Example: Shapes is a client of DrawingPanel and Graphics.

Shapes.java (client program)
public class Shapes {

main(String[] args) {
new DrawingPanel(...)
new DrawingPanel(...)
...

}
}

DrawingPanel.java (class)
public class DrawingPanel {

...
}

Copyright 2010 by Pearson Education
8

The Object Concept
� procedural programming: Programs that perform their

behavior as a series of steps to be carried out

� object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects
� Takes practice to understand the object concept

Copyright 2010 by Pearson Education
9

Blueprint analogy
iPhone blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPhone #1
state:
song = “Watch Me (Whip/Nae Nae)"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPhone #2
state:
song = “Don’t Think Twice, It’s All Right"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPhone #3
state:
song = ”Heart-Shaped Box"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

Copyright 2010 by Pearson Education
10

Abstraction
� abstraction: A distancing between ideas and details.

� We can use objects without knowing how they work.

� abstraction in an iPhone:
� You understand its external behavior (buttons, screen).
� You don't understand its inner details, and you don't need to.

Copyright 2010 by Pearson Education
11

Classes and objects
� class: A program entity that represents either:

1. A program / module, or
2. A template for a new type of objects.

� The DrawingPanel class is a template for creating
DrawingPanelobjects.

� object: An instance of a class. An entity that combines
state and behavior.

� object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects.

Copyright 2010 by Pearson Education
12

Our task
� In the following slides, we will implement a Point class

as a way of learning about defining classes.

� We will define a type of objects named Point.
� Each Point object will contain x/y data called fields.
� Each Point object will contain behavior called methods.
� Client programs will use the Point objects.

Copyright 2010 by Pearson Education
13

Point objects (desired)
Point p1 = new Point(5, -2);
Point p2 = new Point(); // origin, (0, 0)

� Data in each Point object:

� Methods in each Point object:
Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx,
dy)

adjusts the point's x and y by the given
amounts

distance(p) how far away the point is from point p

draw(g) displays the point on a drawing panel

name Description

x the point's x-
coordinate

y the point's y-
coordinate

Copyright 2010 by Pearson Education
14

Point class as blueprint

� The class (blueprint) will describe how to create objects.
� Each object will contain its own data and methods.

Point class
state:
int x, y

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #1
state:
x = 5, y = -2

behavior:
setLocation(int x, int
y)
translate(int dx, int
dy)
distance(Point p)
draw(Graphics g)

Point object #2
state:
x = -245, y = 1897

behavior:
setLocation(int x, int
y)
translate(int dx, int
dy)
distance(Point p)
draw(Graphics g)

Point object #3
state:
x = 18, y = 42

behavior:
setLocation(int x, int
y)
translate(int dx, int
dy)
distance(Point p)
draw(Graphics g)

Copyright 2010 by Pearson Education
15

Object state:
Fields

reading: 8.2

Copyright 2010 by Pearson Education
16

Point class, version 1
public class Point {

int x;
int y;

}

� Save this code into a file named Point.java.

� The above code creates a new type named Point.
� Each Point object contains two pieces of data:

� an int named x, and
� an int named y.

� Point objects do not contain any behavior (yet).

Copyright 2010 by Pearson Education
17

Fields
� field: A variable inside an object that is part of its state.

� Each object has its own copy of each field.

� Declaration syntax:

type name;

� Example:

public class Student {
String name; // each Student object has a
double gpa; // name and gpa field

}

Copyright 2010 by Pearson Education
18

Accessing fields
� Other classes can access/modify an object's fields.

� access: variable.field
� modify: variable.field = value;

� Example:
Point p1 = new Point();
Point p2 = new Point();
System.out.println("the x-coord is " + p1.x); // access
p2.y = 13; // modify

Copyright 2010 by Pearson Education
19

A class and its client
� Point.java is not, by itself, a runnable program.

� A class can be used by client programs.

PointMain.java (client program)
public class PointMain {
main(String args) {

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;
...

}
}

Point.java (class of
objects)

public class Point {
int x;
int y;

}

x 7 y 2

x 4 y 3

Copyright 2010 by Pearson Education
20

PointMain client example
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println(p1.x + ", " + p1.y); // 0, 2

// move p2 and then print it
p2.x += 2;
p2.y++;
System.out.println(p2.x + ", " + p2.y); // 6, 1

}
}

Copyright 2010 by Pearson Education
21

Object behavior:
Methods

reading: 8.3

Copyright 2010 by Pearson Education
22

Client code redundancy
� Suppose our client program wants to draw Point objects:

// draw each city
Point p1 = new Point();
p1.x = 15;
p1.y = 37;
g.fillOval(p1.x, p1.y, 3, 3);
g.drawString("(" + p1.x + ", " + p1.y + ")", p1.x, p1.y);

� To draw other points, the same code must be repeated.
� We can remove this redundancy using a method.

Copyright 2010 by Pearson Education
23

Eliminating redundancy, v1
� We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.
public static void draw(Point p, Graphics g) {

g.fillOval(p.x, p.y, 3, 3);
g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);

}

� main would call the method as follows:
draw(p1, g);

Copyright 2010 by Pearson Education
24

Problems with static solution
� We are missing a major benefit of objects: code reuse.

� Every program that draws Points would need a draw method.

� The syntax doesn't match how we're used to using
objects.

draw(p1, g); // static (bad)

� The point of classes is to combine state and behavior.
� The draw behavior is closely related to a Point's data.
� The method belongs inside each Point object.

p1.draw(g); // inside the object (better)

Copyright 2010 by Pearson Education
25

Instance methods
� instance method (or object method): Exists inside

each object of a class and gives behavior to each object.

public type name(parameters) {
statements;

}

� same syntax as static methods, but without static keyword

Example:
public void shout() {

System.out.println("HELLO THERE!");
}

Copyright 2010 by Pearson Education
26

Instance method example
public class Point {

int x;
int y;

// Draws this Point object with the given pen.
public void draw(Graphics g) {

...
}

}

� The draw method no longer has a Point p parameter.
� How will the method know which point to draw?

� How will the method access that point's x/y data?

Copyright 2010 by Pearson Education
27

� Each Point object has its own copy of the draw method, which
operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.draw(g);
p2.draw(g);

public void draw(Graphics g) {
// this code can see p1's x and y

}

Point objects w/ method

x 7 y 2

x 4 y 3
public void draw(Graphics g) {

// this code can see p2's x and y
}

p2

p1

Copyright 2010 by Pearson Education
28

The implicit parameter
� implicit parameter:

The object on which an instance method is called.

� During the call p1.draw(g);
the object referred to by p1 is the implicit parameter.

� During the call p2.draw(g);
the object referred to by p2 is the implicit parameter.

� The instance method can refer to that object's fields.
� We say that it executes in the context of a particular object.
� draw can refer to the x and y of the object it was called on.

Copyright 2010 by Pearson Education
29

Point class, version 2
public class Point {

int x;
int y;

// Changes the location of this Point object.
public void draw(Graphics g) {

g.fillOval(x, y, 3, 3);
g.drawString("(" + x + ", " + y + ")", x, y);

}
}

� Each Point object contains a draw method that draws that
point at its current x/y position.

Copyright 2010 by Pearson Education
30

Class method questions
� Write a method translate that changes a Point's

location by a given dx, dy amount.

� Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

Use the formula:

� Modify the Point and client code to use these methods.

() ()212
2

12 yyxx −+−

Copyright 2010 by Pearson Education
31

Class method answers
public class Point {

int x;
int y;

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}
}

