
Write a static method rearrange that takes an array of integers as an argument and that rearranges

the values so that all of the multiples of 3 come first followed by numbers that are one greater than a

multiple of 3 followed by numbers that are two greater than a multiple of 3. For example, if a variable

called "list" stores this sequence of values:

(23, 12, 8, 0, 4, 80, 9, 7, 30, 99, 50, 42, 13, 47, 2, 16, 87, 75)

Then the following call:

rearrange(list);

Should rearrange the values to look something like this:

(12, 0, 9, 30, 99, 42, 87, 75, 4, 13, 16, 7, 23, 47, 2, 50, 8, 80)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~  ~~~~~~~~~~~~  ~~~~~~~~~~~~~~~~~~~~ 

multiples of 3                1 more than a     2 more than a 

                              multiple of 3     multiple of 3 

This is only one possible arrangement. Any arrangement that puts the multiples of 3 first followed by 

the values that are one more than a multiple of 3 followed by the values that are two more than a 

multiple of 3 is acceptable. You are not allowed to use an auxiliary data structure such as a 

temporary array or ArrayList to solve this problem. You may assume that all values in the array are 

greater than or equal to 0. 

Write your solution to rearrange below. 

Here’s the solution from class: 

 

 

 

 

 

 

 

 

 

 

 



public static void rearrange(int[] list) { 

 int swap = 0; 

 for (int i = swap; i < list.length; i++) { 

  int num = list[i]; 

  if (num % 3 == 0) { 

   list[i] = list[swap]; 

   list[swap] = num; 

   swap++; 

  } 

 } 

 for (int i = swap; i < list.length; i++) { 

  int num = list[i]; 

  if (num % 3 == 1) { 

   list[i] = list[swap]; 

   list[swap] = num; 

   swap++; 

  } 

 } 

} 

 

 

 

 

 

 

 

 

 

 



Here’s the more efficient solution that avoids redundancy. Either one of the two would get full credit on 
an exam: 

 

public static void rearrange(int[] list) { 

 int swap = 0; 

 for (int i = 0; i < 2; i++) { 

  for (int i = swap; i < list.length; i++) { 

   int num = list[i]; 

   if (num % 3 == i) { 

    list[i] = list[swap]; 

    list[swap] = num; 

    swap++; 

   } 

  } 

 } 

} 

 

 

 

 

 

 

 

 

 

 

 

 



Write a method called interleave that accepts two ArrayLists of 

integers a1 and a2 as parameters and inserts the elements of a2into a1 at 

alternating indexes. If the lists are of unequal length, the remaining elements of 

the longer list are left at the end of a1. For example, if a1 stores [10, 20, 

30] and a2 stores [4, 5, 6, 7, 8], the call of interleave(a1, a2); should 

change a1 to store[10, 4, 20, 5, 30, 6, 7, 8]. If a1 had stored [10, 20, 

30, 40, 50] and a2 had stored [6, 7, 8], the call of interleave(a1, 
a2); would change a1 to store [10, 6, 20, 7, 30, 8, 40, 50]. 

 

public static void interleave(ArrayList<Integer> a1, ArrayList<Integer> a2) { 

int index = 1;  

for (int i = 0; i < a2.size(); i++) { 

      // This comes before to address the "empty a1" case 

          if(index > a1.size()) { 

           index = a1.size();     

      } 

          a1.add(index, a2.get(i)); 

          index += 2; 

     } 

} 

 

 

 

 

 

 

 

 

 



Write a static method named playlist that accepts as its parameter a Scanner for an input file 

representing a sequence of songs.  Your method will reformat the song names and lengths found in the 

file to be more readable and output them to the console.  Additionally, your method will return whether 

or not all the songs in the file would fit on a standard CD.  A standard CD can hold up to, and including, 
80 minutes of audio data.   

Each line of the playlist file consists of a song name consisting of one or more words, a semi -colon (ie, ;), 

and the song's length as two integers, minutes and seconds.  Your method should read each line and 

output the song information in a more readable format to the console.  Separate each token of the song 

name with a single space, capitalize the first letter of each word, and lowercase the rest.  If the total 

time needed to play all the songs is 80 minutes of less, return true.  Otherwi se, return false.  The table 

below shows two example files.  The first file has five songs which fit on a CD because the total playtime 

is under 80 minutes.  The second file has six songs, but all six songs cannot fit on a CD because it takes 

more than 80 minutes to play them.  Regardless of the total playtime, the reformatted playlist is always 
printed to the console.   

Input File Console Output Value 
Returned 

Alejandro ;      8 43 

  hOme       ; 5 3 

WHEN yoU Love SomEBODY ;  2 5 

   rudE to rile ; 3        30 

CALIFORNIa   gurls ; 3      56   

Alejandro 8:43 

Home 5:3 

When You Love Somebody 2:5 

Rude To Rile 3:30 

California Gurls 3:56 

true 

tubULaR    bElls ; 25 01 

   reVolution 9 ;   8 22 

lasT   caLL ; 12 41 

ShARKS    and SAILORS ; 8 13 

 osAKA part    I    ; 38 58 

SHINE ON YOU    crazy diamond ; 
26 01    

Tubular Bells 25:1 

Revolution 9 8:22 

Last Call 12:41 

Sharks And Sailors 8:13 

Osaka Part I 38:58 

Shine On You Crazy Diamond 
26:1 

false 

Assume valid input.  Assume the file contains data for at least one song, every line contains one song’s 

data, and every song is in the format described above.  Each song’s minutes and seconds are in the 
range of 0-59.   

 

 

 

 

 

 

 



public static boolean playlist(Scanner input) { 

 int totalSeconds = 0; 

 while (input.hasNextLine()) { 

  String line = input.nextLine(); 

  Scanner lineScan = new Scanner(line); 

  String nextWord = lineScan.next(); 

  String song = ""; 

  while(lineScan.hasNext() && !nextWord.equals(";")) { 

   String word = lineScan.next();  

song += nextWord.toUpperCase().substring(0, 1) +          
nextWord.toLowerCase().substring(1); + " " 

   nextWord = word; 

  } 

  int min = lineScan.nextInt(); 

  int sec = lineScan.nextInt(); 

  totalSeconds += min * 60 + sec; 

  System.out.println(song + min + ":" + sec); 

 } 

 return totalSeconds <= 4800; 

} 


