
Building Java Programs

Chapter 6

Lecture14: Line-Based File Input

reading: 6.3 - 6.5

2

Alan Turing
1912-1954

Breaking the Enigma

3

 The limits of programming

 Turing Complete

 The Halting Problem

Alan Turing
1912-1954

 Artificial Intelligence

 Turing Test

 The Imitation Game

4

Hours question
 Given a file hours.txt with the following contents:

123 Ben 12.5 8.1 7.6 3.2

456 Greg 4.0 11.6 6.5 2.7 12

789 Victoria 8.0 8.0 8.0 8.0 7.5

 Consider the task of computing hours worked by each person:

Ben (ID#123) worked 31.4 hours (7.85 hours/day)

Greg (ID#456) worked 36.8 hours (7.36 hours/day)

Victoria (ID#789) worked 39.5 hours (7.90 hours/day)

5

Hours answer (flawed)
// This solution does not work!

import java.io.*; // for File

import java.util.*; // for Scanner

public class HoursWorked {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));

while (input.hasNext()) {

// process one person

int id = input.nextInt();

String name = input.next();

double totalHours = 0.0;

int days = 0;

while (input.hasNextDouble()) {

totalHours += input.nextDouble();

days++;

}

System.out.println(name + " (ID#" + id +

") worked " + totalHours + " hours (" +

(totalHours / days) + " hours/day)");

}

}

}

6

Flawed output
Ben (ID#123) worked 487.4 hours (97.48 hours/day)

Exception in thread "main"

java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)

at java.util.Scanner.next(Scanner.java:1461)

at java.util.Scanner.nextInt(Scanner.java:2091)

at HoursWorked.main(HoursBad.java:9)

 The inner while loop is grabbing the next person's ID.

 We want to process the tokens, but we also care about the line
breaks (they mark the end of a person's data).

 A better solution is a hybrid approach:

 First, break the overall input into lines.

 Then break each line into tokens.

7

Line-based Scanner

methods

Scanner input = new Scanner(new File("<filename>"));

while (input.hasNextLine()) {

String line = input.nextLine();

<process this line>;

}

Method Description

nextLine() returns next entire line of input (from cursor to

\n)

hasNextLine(

)

returns true if there are any more lines of

input to read (always true for console input)

8

Consuming lines of input
23 3.14 John Smith "Hello" world

45.2 19

 The Scanner reads the lines as follows:

23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

^

 String line = input.nextLine();

23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

^

 String line2 = input.nextLine();

23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

^

 Each \n character is consumed but not returned.

9

Scanners on Strings

 A Scanner can tokenize the contents of a String:

Scanner <name> = new Scanner(<String>);

 Example:

String text = "15 3.2 hello 9 27.5";

Scanner scan = new Scanner(text);

int num = scan.nextInt();

System.out.println(num); // 15

double num2 = scan.nextDouble();

System.out.println(num2); // 3.2

String word = scan.next();

System.out.println(word); // "hello"

10

Mixing lines and tokens

// Counts the words on each line of a file

Scanner input = new Scanner(new File("input.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

// process the contents of this line

int count = 0;

while (lineScan.hasNext()) {

String word = lineScan.next();

count++;

}

System.out.println("Line has " + count + " words");

}

Input file input.txt: Output to

console:

The quick brown fox jumps over

the lazy dog.

Line has 6 words

Line has 3 words

11

Hours question
 Fix the Hours program to read the input file properly:

123 Ben 12.5 8.1 7.6 3.2

456 Greg 4.0 11.6 6.5 2.7 12

789 Victoria 8.0 8.0 8.0 8.0 7.5

 Recall, it should produce the following output:

Ben (ID#123) worked 31.4 hours (7.85 hours/day)

Greg (ID#456) worked 36.8 hours (7.36 hours/day)

Victoria (ID#789) worked 39.5 hours (7.90 hours/day)

12

Hours answer, corrected
// Processes an employee input file and outputs each employee's hours.
import java.io.*; // for File

import java.util.*; // for Scanner

public class Hours {

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

processEmployee(line);

}

}

public static void processEmployee(String line) {

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456

String name = lineScan.next(); // e.g. "Greg"
double sum = 0.0;

int count = 0;

while (lineScan.hasNextDouble()) {

sum = sum + lineScan.nextDouble();

count++;

}

double average = sum / count;

System.out.println(name + " (ID#" + id + ") worked " +

sum + " hours (" + average + " hours/day)");

}

}

13

File output

reading: 6.4 - 6.5

14

Output to files
 PrintStream: An object in the java.io package that lets

you print output to a destination such as a file.

 Any methods you have used on System.out

(such as print, println) will work on a PrintStream.

 Syntax:

PrintStream <name> = new PrintStream(new File("<filename>"));

Example:
PrintStream output = new PrintStream(new File("out.txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

15

Details about PrintStream

PrintStream <name> = new PrintStream(new File("<filename>"));

 If the given file does not exist, it is created.

 If the given file already exists, it is overwritten.

 The output you print appears in a file, not on the console.

You will have to open the file with an editor to see it.

 Do not open the same file for both reading (Scanner)

and writing (PrintStream) at the same time.

 You will overwrite your input file with an empty file (0 bytes).

16

System.out and PrintStream

 The console output object, System.out, is a
PrintStream.

PrintStream out1 = System.out;

PrintStream out2 = new PrintStream(new File("data.txt"));

out1.println("Hello, console!"); // goes to console

out2.println("Hello, file!"); // goes to file

 A reference to it can be stored in a PrintStream variable.

 Printing to that variable causes console output to appear.

 You can pass System.out to a method as a PrintStream.

 Allows a method to send output to the console or a file.

17

PrintStream question

 Modify our previous Hours program to use a PrintStream

to send its output to the file hours_out.txt.

 The program will produce no console output.

 But the file hours_out.txt will be created with the text:

Ben (ID#123) worked 31.4 hours (7.85 hours/day)

Greg (ID#456) worked 36.8 hours (7.36 hours/day)

Victoria (ID#789) worked 39.5 hours (7.9 hours/day)

18

PrintStream answer
// Processes an employee input file and outputs each employee's hours.
import java.io.*; // for File

import java.util.*; // for Scanner

public class Hours2 {

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));

PrintStream out = new PrintStream(new File("hours_out.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();

processEmployee(out, line);

}

}

public static void processEmployee(PrintStream out, String line) {
Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. "Greg"
double sum = 0.0;

int count = 0;

while (lineScan.hasNextDouble()) {

sum = sum + lineScan.nextDouble();

count++;

}

double average = sum / count;

out.println(name + " (ID#" + id + ") worked " +
sum + " hours (" + average + " hours/day)");

}

}

19

Prompting for a file name
 We can ask the user to tell us the file to read.

 The filename might have spaces; use nextLine(), not next()

// prompt for input file name

Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

Scanner input = new Scanner(new File(filename));

 Files have an exists method to test for file-not-found:

File file = new File("hours.txt");

if (!file.exists()) {
// try a second input file as a backup
System.out.print("hours file not found!");
file = new File("hours2.txt");

}

