
Copyright 2008 by Pearson Education

Building Java Programs

Graphics

reading: Supplement 3G

videos: Ch. 3G #1-2

Copyright 2008 by Pearson Education
2

Objects (briefly)
 object: An entity that contains data and behavior.

 data: Variables inside the object.

 behavior: Methods inside the object.

 You interact with the methods; the data is hidden in the object.

 Constructing (creating) an object:

type objectName = new type(parameters);

 Calling an object's method:

objectName.methodName(parameters);

Copyright 2008 by Pearson Education
3

Graphical objects
We will draw graphics in Java using 3 kinds of objects:

 DrawingPanel: A window on the screen.

 Not part of Java; provided by the authors.

 Graphics: A "pen" to draw shapes/lines on a window.

 Color: Colors in which to draw shapes.

Copyright 2008 by Pearson Education
4

DrawingPanel

"Canvas" objects that represents windows/drawing surfaces

 To create a window:

DrawingPanel name = new DrawingPanel(width, height);

Example:

DrawingPanel panel = new DrawingPanel(300, 200);

 The window has nothing on it.

 We can draw shapes and lines
on it using another object of
type Graphics.

Copyright 2008 by Pearson Education
5

Graphics

"Pen" objects that can draw lines and shapes

 Access it by calling getGraphics on your DrawingPanel.

Graphics g = panel.getGraphics();

 Draw shapes by calling methods
on the Graphics object.

g.fillRect(10, 30, 60, 35);

g.fillOval(80, 40, 50, 70);

Copyright 2008 by Pearson Education
6

Java class libraries, import
 Java class libraries: Classes included with Java's JDK.

 organized into groups named packages

 To use a package, put an import declaration in your program.

 Syntax:

// put this at the very top of your program

import packageName.*;

 Graphics is in a package named java.awt

import java.awt.*;

 In order to use Graphics, you must place the above line at the
very top of your program, before the public class header.

Copyright 2008 by Pearson Education
7

Coordinate system
 Each (x, y) position is a pixel ("picture element").

 (0, 0) is at the window's top-left corner.

 x increases rightward and the y increases downward.

 The rectangle from (0, 0) to (200, 100) looks like this:

(0, 0) x+

(200, 100)

y+

Copyright 2008 by Pearson Education
8

Graphics methods

Method name Description

g.drawLine(x1, y1, x2, y2); line between points (x1, y1), (x2, y2)

g.drawOval(x, y, width, height); outline largest oval that fits in a box of
size width * height with top-left at (x, y)

g.drawRect(x, y, width, height); outline of rectangle of size
width * height with top-left at (x, y)

g.drawString(text, x, y); text with bottom-left at (x, y)

g.fillOval(x, y, width, height); fill largest oval that fits in a box of size
width * height with top-left at (x, y)

g.fillRect(x, y, width, height); fill rectangle of size width * height
with top-left at (x, y)

g.setColor(Color); set Graphics to paint any following

shapes in the given color

Copyright 2008 by Pearson Education
9

Color

 Create one using Red-Green-Blue (RGB) values from 0-255

Color name = new Color(red, green, blue);

 Example:

Color brown = new Color(192, 128, 64);

 Or use a predefined Color class constant (more common)

Color.CONSTANT_NAME

where CONSTANT_NAME is one of:

 BLACK, BLUE, CYAN, DARK_GRAY, GRAY,

GREEN, LIGHT_GRAY, MAGENTA, ORANGE,

PINK, RED, WHITE, or YELLOW

Copyright 2008 by Pearson Education
10

Using Colors
 Pass a Color to Graphics object's setColor method

 Subsequent shapes will be drawn in the new color.

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.drawLine(20, 0, 10, 30);

g.setColor(Color.RED);

g.fillOval(60, 40, 40, 70);

 Pass a color to DrawingPanel's setBackground method

 The overall window background color will change.

Color brown = new Color(192, 128, 64);

panel.setBackground(brown);

Copyright 2008 by Pearson Education
11

Outlined shapes
 To draw a colored shape with an outline, first fill it,

then draw the same shape in the outline color.

import java.awt.*; // so I can use Graphics

public class OutlineExample {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(150, 70);

Graphics g = panel.getGraphics();

// inner red fill

g.setColor(Color.RED);

g.fillRect(20, 10, 100, 50);

// black outline

g.setColor(Color.BLACK);

g.drawRect(20, 10, 100, 50);

}

}

Copyright 2008 by Pearson Education
12

Drawing Example
500px

400px

Cyan50px

50px

100px

100px
200px

100px

100px

100px

150px

250px

75px

75px

Copyright 2008 by Pearson Education
13

Drawing with loops
 The x,y, w,h expression can use the loop counter variable:

DrawingPanel panel = new DrawingPanel(400, 300);

panel.setBackground(Color.YELLOW);

Graphics g = panel.getGraphics();

g.setColor(Color.RED);

for (int i = 1; i <= 10; i++) {

g.fillOval(100 + 20 * i, 5 + 20 * i, 50, 50);

}

 Nested loops are okay as well:

DrawingPanel panel = new DrawingPanel(250, 250);

Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);

for (int x = 1; x <= 4; x++) {

for (int y = 1; y <= 9; y++) {

g.drawString("Java", x * 40, y * 25);

}

}

Copyright 2008 by Pearson Education
14

Loops that begin at 0
 Beginning at 0 and using < can make coordinates easier.

 Example:

 Draw ten stacked rectangles starting at (20, 20), height 10,
width starting at 100 and decreasing by 10 each time:

DrawingPanel panel = new DrawingPanel(160, 160);

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20, 20 + 10 * i, 100 - 10 * i, 10);

}

Copyright 2008 by Pearson Education
15

Drawing w/ loops questions
 Code from previous slide:

DrawingPanel panel = new DrawingPanel(160, 160);

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20, 20 + 10 * i, 100 - 10 * i, 10);

}

 Write variations of the above
program that draw the figures
at right as output.

Copyright 2008 by Pearson Education
16

Drawing w/ loops answers
 Solution #1:

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20 + 10 * i, 20 + 10 * i,

100 - 10 * i, 10);

}

 Solution #2:
Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(110 - 10 * i, 20 + 10 * i,

10 + 10 * i, 10);

}

Copyright 2008 by Pearson Education
17

Superimposing shapes
 When ≥ 2 shapes occupy the same pixels, the last drawn "wins."

import java.awt.*;

public class Car {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);

g.fillOval(20, 70, 20, 20);

g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(80, 40, 30, 20);

}

}

Copyright 2008 by Pearson Education
18

Drawing with methods
 To draw in multiple methods, you must pass Graphics g.

import java.awt.*;

public class Car2 {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

drawCar(g);

}

public static void drawCar(Graphics g) {

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);

g.fillOval(20, 70, 20, 20);

g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(80, 40, 30, 20);

}

}

Copyright 2008 by Pearson Education
19

Parameterized figures
 Modify the car-drawing method so that it can draw cars at

different positions, as in the following image.

 Top-left corners: (10, 30), (150, 10)

Copyright 2008 by Pearson Education
20

Parameterized answer
import java.awt.*;

public class Car3 {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(260, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

drawCar(g, 10, 30);

drawCar(g, 150, 10);

}

public static void drawCar(Graphics g, int x, int y) {

g.setColor(Color.BLACK);

g.fillRect(x, y, 100, 50);

g.setColor(Color.RED);

g.fillOval(x + 10, y + 40, 20, 20);

g.fillOval(x + 70, y + 40, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(x + 70, y + 10, 30, 20);

}

}

Copyright 2008 by Pearson Education
21

 Modify drawCar to allow the car to be drawn at any size.

 Existing car: size 100

 Second car: size 50, top/left at (150, 10)

 Then use a for loop to draw a line of cars.

 Start at (10, 130), each car size 40, separated by 50px.

Drawing parameter question

Copyright 2008 by Pearson Education
22

Drawing parameter answer
import java.awt.*;

public class Car4 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(210, 100);
panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();
drawCar(g, 10, 30, 100);
drawCar(g, 150, 10, 50);

for (int i = 0; i < 5; i++) {
drawCar(g, 10 + i * 50, 130, 40);

}
}

public static void drawCar(Graphics g, int x, int y, int size) {
g.setColor(Color.BLACK);
g.fillRect(x, y, size, size / 2);

g.setColor(Color.RED);
g.fillOval(x + size / 10, y + 2 * size / 5,

size / 5, size / 5);
g.fillOval(x + 7 * size / 10, y + 2 * size / 5,

size / 5, size / 5);

g.setColor(Color.CYAN);
g.fillRect(x + 7 * size / 10, y + size / 10,

3 * size / 10, size / 5);
}

}

Copyright 2008 by Pearson Education
23

Polygon

Objects that represent arbitrary shapes

 Add points to a Polygon using its addPoint(x, y) method.

 Example:

DrawingPanel p = new DrawingPanel(100, 100);

Graphics g = p.getGraphics();

g.setColor(Color.GREEN);

Polygon poly = new Polygon();

poly.addPoint(10, 90);

poly.addPoint(50, 10);

poly.addPoint(90, 90);

g.fillPolygon(poly);

Copyright 2008 by Pearson Education
24

Animation with sleep

 DrawingPanel's sleep method pauses your program for a

given number of milliseconds.

 You can use sleep to create simple animations.
DrawingPanel panel = new DrawingPanel(250, 200);

Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);

for (int i = 1; i <= 10; i++) {

g.fillOval(15 * i, 15 * i, 30, 30);

panel.sleep(500);

}

 Try adding sleep commands to loops in past exercises in this

chapter and watch the panel draw itself piece by piece.

