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Objects (briefly)
 object: An entity that contains data and behavior.

 data: Variables inside the object.

 behavior: Methods inside the object.

 You interact with the methods; the data is hidden in the object.

 Constructing (creating) an object:

type objectName = new type(parameters);

 Calling an object's method:

objectName.methodName(parameters);
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Graphical objects
We will draw graphics in Java using 3 kinds of objects:

 DrawingPanel: A window on the screen.

 Not part of Java; provided by the authors.

 Graphics: A "pen" to draw shapes/lines on a window.

 Color: Colors in which to draw shapes.
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DrawingPanel

"Canvas" objects that represents windows/drawing surfaces

 To create a window:

DrawingPanel name = new DrawingPanel(width, height);

Example:

DrawingPanel panel = new DrawingPanel(300, 200);

 The window has nothing on it.

 We can draw shapes and lines
on it using another object of
type Graphics. 
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Graphics

"Pen" objects that can draw lines and shapes

 Access it by calling getGraphics on your DrawingPanel.

Graphics g = panel.getGraphics();

 Draw shapes by calling methods
on the Graphics object.

g.fillRect(10, 30, 60, 35);

g.fillOval(80, 40, 50, 70);
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Java class libraries, import
 Java class libraries: Classes included with Java's JDK.

 organized into groups named packages

 To use a package, put an import declaration in your program.

 Syntax:

// put this at the very top of your program

import packageName.*;

 Graphics is in a package named java.awt

import java.awt.*;

 In order to use Graphics, you must place the above line at the 
very top of your program, before the public class header.
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Coordinate system
 Each (x, y) position is a pixel ("picture element").

 (0, 0) is at the window's top-left corner.

 x increases rightward and the y increases downward.

 The rectangle from (0, 0) to (200, 100) looks like this:

(0, 0) x+

(200, 100)

y+
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Graphics methods

Method name Description

g.drawLine(x1, y1, x2, y2); line between points (x1, y1), (x2, y2)

g.drawOval(x, y, width, height); outline largest oval that fits in a box of 
size width * height with top-left at (x, y)

g.drawRect(x, y, width, height); outline of rectangle of size
width * height with top-left at (x, y)

g.drawString(text, x, y); text with bottom-left at (x, y)

g.fillOval(x, y, width, height); fill largest oval that fits in a box of size 
width * height with top-left at (x, y)

g.fillRect(x, y, width, height); fill rectangle of size width * height
with top-left at (x, y)

g.setColor(Color); set Graphics to paint any following 

shapes in the given color
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Color

 Create one using Red-Green-Blue (RGB) values from 0-255

Color name = new Color(red, green, blue);

 Example:

Color brown = new Color(192, 128, 64);

 Or use a predefined Color class constant  (more common)

Color.CONSTANT_NAME

where CONSTANT_NAME is one of:

 BLACK, BLUE,  CYAN, DARK_GRAY, GRAY,

GREEN, LIGHT_GRAY, MAGENTA, ORANGE,

PINK, RED,  WHITE, or YELLOW
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Using Colors
 Pass a Color to Graphics object's setColor method

 Subsequent shapes will be drawn in the new color.

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.drawLine(20, 0, 10, 30);

g.setColor(Color.RED);

g.fillOval(60, 40, 40, 70);

 Pass a color to DrawingPanel's setBackground method

 The overall window background color will change.

Color brown = new Color(192, 128, 64);

panel.setBackground(brown);
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Outlined shapes
 To draw a colored shape with an outline, first fill it, 

then draw the same shape in the outline color.

import java.awt.*;  // so I can use Graphics

public class OutlineExample {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(150, 70);

Graphics g = panel.getGraphics();

// inner red fill

g.setColor(Color.RED);

g.fillRect(20, 10, 100, 50);

// black outline

g.setColor(Color.BLACK);

g.drawRect(20, 10, 100, 50);

}

}
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Drawing Example
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Drawing with loops
 The x,y, w,h expression can use the loop counter variable:

DrawingPanel panel = new DrawingPanel(400, 300);

panel.setBackground(Color.YELLOW);

Graphics g = panel.getGraphics();

g.setColor(Color.RED);

for (int i = 1; i <= 10; i++) {

g.fillOval(100 + 20 * i, 5 + 20 * i, 50, 50);

}

 Nested loops are okay as well:

DrawingPanel panel = new DrawingPanel(250, 250);

Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);

for (int x = 1; x <= 4; x++) {

for (int y = 1; y <= 9; y++) {

g.drawString("Java", x * 40, y * 25);

}

}
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Loops that begin at 0
 Beginning at 0 and using < can make coordinates easier.

 Example:

 Draw ten stacked rectangles starting at (20, 20), height 10, 
width starting at 100 and decreasing by 10 each time:

DrawingPanel panel = new DrawingPanel(160, 160);

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20, 20 + 10 * i, 100 - 10 * i, 10);

}
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Drawing w/ loops questions
 Code from previous slide:

DrawingPanel panel = new DrawingPanel(160, 160);

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20, 20 + 10 * i, 100 - 10 * i, 10);

}

 Write variations of the above 
program that draw the figures
at right as output.
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Drawing w/ loops answers
 Solution #1:

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20 + 10 * i, 20 + 10 * i,

100 - 10 * i, 10);

}

 Solution #2:
Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(110 - 10 * i, 20 + 10 * i,

10 + 10 * i, 10);

}
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Superimposing shapes
 When ≥ 2 shapes occupy the same pixels, the last drawn "wins."

import java.awt.*;

public class Car {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);

g.fillOval(20, 70, 20, 20);

g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(80, 40, 30, 20);

}

}
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Drawing with methods
 To draw in multiple methods, you must pass Graphics g.

import java.awt.*;

public class Car2 {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

drawCar(g);

}

public static void drawCar(Graphics g) {

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);

g.fillOval(20, 70, 20, 20);

g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(80, 40, 30, 20);

}

}
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Parameterized figures
 Modify the car-drawing method so that it can draw cars at 

different positions, as in the following image.

 Top-left corners: (10, 30), (150, 10)
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Parameterized answer
import java.awt.*;

public class Car3 {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(260, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

drawCar(g, 10, 30);

drawCar(g, 150, 10);

}

public static void drawCar(Graphics g, int x, int y) {

g.setColor(Color.BLACK);

g.fillRect(x, y, 100, 50);

g.setColor(Color.RED);

g.fillOval(x + 10, y + 40, 20, 20);

g.fillOval(x + 70, y + 40, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(x + 70, y + 10, 30, 20);

}

}
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 Modify drawCar to allow the car to be drawn at any size.

 Existing car: size 100

 Second car: size 50, top/left at (150, 10)

 Then use a for loop to draw a line of cars.

 Start at (10, 130), each car size 40, separated by 50px.

Drawing parameter question
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Drawing parameter answer
import java.awt.*;

public class Car4 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(210, 100);
panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();
drawCar(g, 10, 30, 100);
drawCar(g, 150, 10, 50);

for (int i = 0; i < 5; i++) {
drawCar(g, 10 + i * 50, 130, 40);

}
}

public static void drawCar(Graphics g, int x, int y, int size) {
g.setColor(Color.BLACK);
g.fillRect(x, y, size, size / 2);

g.setColor(Color.RED);
g.fillOval(x + size / 10, y + 2 * size / 5,

size / 5, size / 5);
g.fillOval(x + 7 * size / 10, y + 2 * size / 5,

size / 5, size / 5);

g.setColor(Color.CYAN);
g.fillRect(x + 7 * size / 10, y + size / 10,

3 * size / 10, size / 5);
}

}
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Polygon

Objects that represent arbitrary shapes

 Add points to a Polygon using its addPoint(x, y) method.

 Example:

DrawingPanel p = new DrawingPanel(100, 100);

Graphics g = p.getGraphics();

g.setColor(Color.GREEN);

Polygon poly = new Polygon();

poly.addPoint(10, 90);

poly.addPoint(50, 10);

poly.addPoint(90, 90);

g.fillPolygon(poly);
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Animation with sleep

 DrawingPanel's sleep method pauses your program for a 

given number of milliseconds.

 You can use sleep to create simple animations.
DrawingPanel panel = new DrawingPanel(250, 200);

Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);

for (int i = 1; i <= 10; i++) {

g.fillOval(15 * i, 15 * i, 30, 30);

panel.sleep(500);

}

 Try adding sleep commands to loops in past exercises in this 

chapter and watch the panel draw itself piece by piece.


