
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 10
Lecture 10-1: ArrayList

reading: 10.1

Copyright 2008 by Pearson Education
2

Exercise
!  Write a program that reads a file and displays

the words of that file as a list.
!  First display all words.
!  Then display them with all plurals (ending in "s") capitalized.
!  Then display them in reverse order.
!  Then display them with all plural words removed.

!  Should we solve this problem using an array?
!  Why or why not?

Copyright 2008 by Pearson Education
3

Naive solution
String[] allWords = new String[1000];
int wordCount = 0;

Scanner input = new Scanner(new File("data.txt"));
while (input.hasNext()) {
 String word = input.next();
 allWords[wordCount] = word;
 wordCount++;
}

!  Problem: You don't know how many words the file will
have.
!  Hard to create an array of the appropriate size.
!  Later parts of the problem are more difficult to solve.

!  Luckily, there are other ways to store data besides in an
array.

Copyright 2008 by Pearson Education
4

Lists
!  list: a collection storing an ordered sequence of elements

!  each element is accessible by a 0-based index
!  a list has a size (number of elements that have been added)
!  elements can be added to the front, back, or elsewhere
!  in Java, a list can be represented as an ArrayList object

Copyright 2008 by Pearson Education
5

Idea of a list
!  Rather than creating an array of boxes, create an object

that represents a "list" of items. (initially an empty list.)
 []

!  You can add items to the list.
!  The default behavior is to add to the end of the list.
 [hello, ABC, goodbye, okay]

!  The list object keeps track of the element values that have
been added to it, their order, indexes, and its total size.
!  Think of an "array list" as an automatically resizing array

object.
!  Internally, the list is implemented using an array and a size

field.

Copyright 2008 by Pearson Education
6

ArrayList methods (10.1)
add(value) appends value at end of list
add(index, value) inserts given value just before the given index,

shifting subsequent values to the right
clear() removes all elements of the list
indexOf(value) returns first index where given value is found

in list (-1 if not found)
get(index) returns the value at given index
remove(index) removes/returns value at given index, shifting

subsequent values to the left
set(index, value) replaces value at given index with given value
size() returns the number of elements in list
toString() returns a string representation of the list

such as "[3, 42, -7, 15]"

Copyright 2008 by Pearson Education
7

Type Parameters (Generics)
ArrayList<Type> name = new ArrayList<Type>();

!  When constructing an ArrayList, you must specify the
type of elements it will contain between < and >.
!  This is called a type parameter or a generic class.
!  Allows the same ArrayList class to store lists of different

types.

ArrayList<String> names = new ArrayList<String>();
names.add("Marty Stepp");
names.add("Stuart Reges");

Copyright 2008 by Pearson Education
8

Learning about classes
!  The Java API Specification is a huge web page containing

documentation about every Java class and its methods.
!  The link to the API Specs is on the course web site.

Copyright 2008 by Pearson Education
9

ArrayList vs. array
!  construction

String[] names = new String[5];
ArrayList<String> list = new ArrayList<String>();

!  storing a value
names[0] = "Jessica";
list.add("Jessica");

!  retrieving a value
String s = names[0];
String s = list.get(0);

Copyright 2008 by Pearson Education
10

ArrayList vs. array 2
!  doing something to each value that starts with "B"

for (int i = 0; i < names.length; i++) {
 if (names[i].startsWith("B")) { ... }
}

for (int i = 0; i < list.size(); i++) {
 if (list.get(i).startsWith("B")) { ... }
}

!  seeing whether the value "Benson" is found
for (int i = 0; i < names.length; i++) {
 if (names[i].equals("Benson")) { ... }
}

if (list.contains("Benson")) { ... }

Copyright 2008 by Pearson Education
11

Exercise, revisited
!  Write a program that reads a file and displays

the words of that file as a list.
!  First display all words.
!  Then display them in reverse order.
!  Then display them with all plurals (ending in "s") capitalized.
!  Then display them with all plural words removed.

Copyright 2008 by Pearson Education
12

Exercise solution (partial)
ArrayList<String> allWords = new ArrayList<String>();
Scanner input = new Scanner(new File("words.txt"));
while (input.hasNext()) {
 String word = input.next();
 allWords.add(word);
}
System.out.println(allWords);

// remove all plural words
for (int i = 0; i < allWords.size(); i++) {
 String word = allWords.get(i);
 if (word.endsWith("s")) {
 allWords.remove(i);
 i--;
 }
}

Copyright 2008 by Pearson Education
13

ArrayList as parameter
public static void name(ArrayList<Type> name) {
!  Example:

// Removes all plural words from the given list.
public static void removePlural(ArrayList<String> list)
{

 for (int i = 0; i < list.size(); i++) {
 String str = list.get(i);
 if (str.endsWith("s")) {
 list.remove(i);
 i--;
 }
 }
}

!  You can also return a list:
public static ArrayList<Type> methodName(params)

Copyright 2008 by Pearson Education
14

ArrayList of primitives?
!  The type you specify when creating an ArrayList must be

an object type; it cannot be a primitive type.

 // illegal -- int cannot be a type parameter
 ArrayList<int> list = new ArrayList<int>();

!  But we can still use ArrayList with primitive types by
using special classes called wrapper classes in their place.

 // creates a list of ints
 ArrayList<Integer> list = new ArrayList<Integer>();

Copyright 2008 by Pearson Education
15

Wrapper classes

!  A wrapper is an object whose sole purpose is to hold a
primitive value.

!  Once you construct the list, use it with primitives as
normal:

ArrayList<Double> grades = new ArrayList<Double>();
grades.add(3.2);
grades.add(2.7);
...
double myGrade = grades.get(0);

Primitive Type Wrapper Type
 int Integer
 double Double
 char Character
 boolean Boolean

Copyright 2008 by Pearson Education
16

Exercise
!  Write a program that reads a file full of numbers and

displays all the numbers as a list, then:
!  Prints the average of the numbers.
!  Prints the highest and lowest number.
!  Filters out all of the even numbers (ones divisible by 2).

Copyright 2008 by Pearson Education
17

Exercise solution (partial)
ArrayList<Integer> numbers = new ArrayList<Integer>();
Scanner input = new Scanner(new File("numbers.txt"));
while (input.hasNextInt()) {
 int n = input.nextInt();
 numbers.add(n);
}
System.out.println(numbers);
filterEvens(numbers);
System.out.println(numbers);
...

// Removes all elements with even values from the given list.
public static void filterEvens(ArrayList<Integer> list) {
 for (int i = list.size() - 1; i >= 0; i--) {
 int n = list.get(i);
 if (n % 2 == 0) {
 list.remove(i);
 }
 }
}

Copyright 2008 by Pearson Education
18

Other Exercises
!  Write a method reverse that reverses the order of the

elements in an ArrayList of strings.

!  Write a method capitalizePlurals that accepts an
ArrayList of strings and replaces every word ending with
an "s" with its uppercased version.

!  Write a method removePlurals that accepts an ArrayList
of strings and removes every word in the list ending with
an "s", case-insensitively.

Copyright 2008 by Pearson Education
19

Out-of-bounds
!  Legal indexes are between 0 and the list's size() - 1.

!  Reading or writing any index outside this range will cause an
IndexOutOfBoundsException.

 ArrayList<String> names = new ArrayList<String>();
 names.add("Marty"); names.add("Kevin");
 names.add("Vicki"); names.add("Larry");
 System.out.println(names.get(0)); // okay
 System.out.println(names.get(3)); // okay
 System.out.println(names.get(-1)); // exception
 names.add(9, "Aimee"); // exception

index 0 1 2 3

value Marty Kevin Vicki Larry

Copyright 2008 by Pearson Education
20

ArrayList "mystery"
ArrayList<Integer> list = new ArrayList<Integer>();
for (int i = 1; i <= 10; i++) {
 list.add(10 * i); // [10, 20, 30, 40, ..., 100]
}

!  What is the output of the following code?

for (int i = 0; i < list.size(); i++) {
 list.remove(i);
}
System.out.println(list);

!  Answer:
[20, 40, 60, 80, 100]

Copyright 2008 by Pearson Education
21

ArrayList "mystery" 2
ArrayList<Integer> list = new ArrayList<Integer>();
for (int i = 1; i <= 5; i++) {
 list.add(2 * i); // [2, 4, 6, 8, 10]
}

!  What is the output of the following code?

int size = list.size();
for (int i = 0; i < size; i++) {
 list.add(i, 42); // add 42 at index i
}
System.out.println(list);

!  Answer:
[42, 42, 42, 42, 42, 2, 4, 6, 8, 10]

Copyright 2008 by Pearson Education
22

Exercise
!  Write a method addStars that accepts an array list of

strings as a parameter and places a * after each element.

!  Example: if an array list named list initially stores:
 [the, quick, brown, fox]

!  Then the call of addStars(list); makes it store:
 [the, *, quick, *, brown, *, fox, *]

!  Write a method removeStars that accepts an array list of
strings, assuming that every other element is a *, and
removes the stars (undoing what was done by addStars
above).

Copyright 2008 by Pearson Education
23

Exercise solution
public static void addStars(ArrayList<String> list) {
 for (int i = 0; i < list.size(); i += 2) {
 list.add(i, "*");
 }
}

public static void removeStars(ArrayList<String> list) {
 for (int i = 0; i < list.size(); i++) {
 list.remove(i);
 }
}

Copyright 2008 by Pearson Education
24

Exercise
!  Write a method intersect that accepts two sorted array

lists of integers as parameters and returns a new list that
contains only the elements that are found in both lists.

!  Example: if lists named list1 and list2 initially store:
 [1, 4, 8, 9, 11, 15, 17, 28, 41, 59]
 [4, 7, 11, 17, 19, 20, 23, 28, 37, 59, 81]

!  Then the call of intersect(list1, list2) returns the list:
 [4, 11, 17, 28, 59]

Copyright 2008 by Pearson Education
25

Other Exercises
!  Write a method reverse that reverses the order of the

elements in an ArrayList of strings.

!  Write a method capitalizePlurals that accepts an
ArrayList of strings and replaces every word ending with
an "s" with its uppercased version.

!  Write a method removePlurals that accepts an ArrayList
of strings and removes every word in the list ending with
an "s", case-insensitively.

