
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-2: Constructors and Encapsulation

reading: 8.4 - 8.5

self-checks: #10-17

exercises: #9, 11, 14, 16

Copyright 2008 by Pearson Education
2

Object initialization:
constructors

reading: 8.4

self-check: #10-12

exercises: #9, 11, 14, 16

Copyright 2008 by Pearson Education
3

Initializing objects
 Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

 We'd rather pass the fields' initial values as parameters:

Point p = new Point(3, 8); // better!

 We are able to this with most types of objects in Java.

Copyright 2008 by Pearson Education
4

Constructors

 constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

 runs when the client uses the new keyword

 does not specify a return type;

it implicitly returns the new object being created

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all fields to 0.

Copyright 2008 by Pearson Education
5

Constructor example

public class Point {

int x;

int y;

// Constructs a Point at the given x/y location.

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

}

Copyright 2008 by Pearson Education
6

Tracing a constructor call
 What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

x yp1

Copyright 2008 by Pearson Education
7

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}

}

OUTPUT:
p1: (5, 2)

p2: (4, 3)

p2: (6, 7)

Copyright 2008 by Pearson Education
8

Common constructor bugs
 Accidentally writing a return type such as void:

public void Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

 This is not a constructor at all, but a method!

 Storing into local variables instead of fields ("shadowing"):

public Point(int initialX, int initialY) {

int x = initialX;

int y = initialY;

}

 This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

Copyright 2008 by Pearson Education
9

Multiple constructors
 A class can have multiple constructors.

 Each one must accept a unique set of parameters.

 Write a constructor for Point objects that accepts no
parameters and initializes the point to the origin, (0, 0).

// Constructs a new point at (0, 0).

public Point() {

x = 0;

y = 0;

}

Copyright 2008 by Pearson Education

10

Encapsulation

reading: 8.5 - 8.6

self-check: #13-17

exercises: #5

Copyright 2008 by Pearson Education
11

Encapsulation
 encapsulation: Hiding implementation details of an

object from its clients.

 Encapsulation provides abstraction.

 separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
12

Private fields
 A field can be declared private.

 No code outside the class can access or change it.

private type name;

 Examples:

private int id;

private String name;

 Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

Copyright 2008 by Pearson Education
13

Accessing private state
 We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

 Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

Copyright 2008 by Pearson Education
14

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
15

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}

}

OUTPUT:
p1 is (5, 2)

p2 is (4, 3)

p2 is (6, 7)

Copyright 2008 by Pearson Education
16

Benefits of encapsulation
 Provides abstraction between an object and its clients.

 Protects an object from unwanted access by clients.

 A bank app forbids a client to change an Account's balance.

 Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

 Allows you to constrain objects' state (invariants).

 Example: Only allow Points with non-negative coordinates.

