
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 1

Lecture 1-2: Static Methods

reading: 1.4 - 1.5

Copyright 2008 by Pearson Education
2

Comments
 comment: A note written in source code by the

programmer to describe or clarify the code.

 Comments are not executed when your program runs.

 Syntax:

 // comment text, on one line

 or,
/* comment text; may span multiple lines */

 Examples:
// This is a one-line comment.

/* This is a very long

 multi-line comment. */

Copyright 2008 by Pearson Education
3

Using comments

 Where to place comments:

 at the top of each file (a "comment header")

 at the start of every method (seen later)

 to explain complex pieces of code

 Comments are useful for:

 Understanding larger, more complex programs.

 Multiple programmers working together, who must understand

each other's code.

Copyright 2008 by Pearson Education
4

Comments example
/* Suzy Student, CS 101, Fall 2019

 This program prints lyrics about ... something. */

public class BaWitDaBa {

 public static void main(String[] args) {

 // first verse

 System.out.println("Bawitdaba");

 System.out.println("da bang a dang diggy diggy");

 System.out.println();

 // second verse

 System.out.println("diggy said the boogy");

 System.out.println("said up jump the boogy");

 }

}

Copyright 2008 by Pearson Education

Static methods

reading: 1.4

self-check: 16-25

exercises: #5-10

videos: Ch. 1 #1

Copyright 2008 by Pearson Education
6

Algorithms
 algorithm: A list of steps for solving a problem.

 Example algorithm: "Bake sugar cookies"

 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

 Set the oven temperature.

 Set the timer.

 Place the cookies into the oven.

 Allow the cookies to bake.

 Spread frosting and sprinkles onto the cookies.

 ...

Copyright 2008 by Pearson Education
7

Problems with algorithms
 lack of structure: Many tiny steps; tough to remember.

 redundancy: Consider making a double batch...
 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

 Set the oven temperature.

 Set the timer.

 Place the first batch of cookies into the oven.

 Allow the cookies to bake.

 Set the timer.

 Place the second batch of cookies into the oven.

 Allow the cookies to bake.

 Mix ingredients for frosting.

 ...

Copyright 2008 by Pearson Education
8

Structured algorithms
 structured algorithm: Split into coherent tasks.

1 Make the cookie batter.

 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

2 Bake the cookies.

 Set the oven temperature.

 Set the timer.

 Place the cookies into the oven.

 Allow the cookies to bake.

3 Add frosting and sprinkles.

 Mix the ingredients for the frosting.

 Spread frosting and sprinkles onto the cookies.

...

Copyright 2008 by Pearson Education
9

Removing redundancy
 A well-structured algorithm can describe repeated tasks

with less redundancy.

1 Make the cookie batter.

 Mix the dry ingredients.

 ...

2a Bake the cookies (first batch).

 Set the oven temperature.

 Set the timer.

 ...

2b Bake the cookies (second batch).

3 Decorate the cookies.

 ...

Copyright 2008 by Pearson Education
10

A program with redundancy
public class BakeCookies {

 public static void main(String[] args) {

 System.out.println("Mix the dry ingredients.");

 System.out.println("Cream the butter and sugar.");

 System.out.println("Beat in the eggs.");

 System.out.println("Stir in the dry ingredients.");

 System.out.println("Set the oven temperature.");

 System.out.println("Set the timer.");

 System.out.println("Place a batch of cookies into the oven.");

 System.out.println("Allow the cookies to bake.");

 System.out.println("Set the oven temperature.");

 System.out.println("Set the timer.");

 System.out.println("Place a batch of cookies into the oven.");

 System.out.println("Allow the cookies to bake.");

 System.out.println("Mix ingredients for frosting.");

 System.out.println("Spread frosting and sprinkles.");

 }

}

Copyright 2008 by Pearson Education
11

Static methods
 static method: A named group of statements.

 denotes the structure of a program

 eliminates redundancy by code reuse

 procedural decomposition:

dividing a problem into methods

 Writing a static method is like

adding a new command to Java.

class

method A

 statement

 statement

 statement

method B

 statement

 statement

method C

 statement

 statement

 statement

Copyright 2008 by Pearson Education
12

Using static methods

1. Design the algorithm.

 Look at the structure, and which commands are repeated.

 Decide what are the important overall tasks.

2. Declare (write down) the methods.

 Arrange statements into groups and give each group a name.

3. Call (run) the methods.

 The program's main method executes the other methods to

perform the overall task.

Copyright 2008 by Pearson Education
13

Design of an algorithm
// This program displays a delicious recipe for baking cookies.
public class BakeCookies2 {

 public static void main(String[] args) {

 // Step 1: Make the cake batter.
 System.out.println("Mix the dry ingredients.");

 System.out.println("Cream the butter and sugar.");

 System.out.println("Beat in the eggs.");

 System.out.println("Stir in the dry ingredients.");

 // Step 2a: Bake cookies (first batch).
 System.out.println("Set the oven temperature.");

 System.out.println("Set the timer.");

 System.out.println("Place a batch of cookies into the oven.");

 System.out.println("Allow the cookies to bake.");

 // Step 2b: Bake cookies (second batch).
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");

 // Step 3: Decorate the cookies.
 System.out.println("Mix ingredients for frosting.");

 System.out.println("Spread frosting and sprinkles.");

 }

}

Copyright 2008 by Pearson Education
14

Gives your method a name so it can be executed

 Syntax:

public static void name() {
 statement;
 statement;
 ...
 statement;
}

 Example:

public static void printWarning() {

 System.out.println("This product causes cancer");

 System.out.println("in lab rats and humans.");

}

Declaring a method

Copyright 2008 by Pearson Education
15

Calling a method
Executes the method's code

 Syntax:

 name();

 You can call the same method many times if you like.

 Example:

 printWarning();

 Output:

 This product causes cancer

 in lab rats and humans.

Copyright 2008 by Pearson Education
16

Program with static method
public class FreshPrince {

 public static void main(String[] args) {

 rap(); // Calling (running) the rap method

 System.out.println();

 rap(); // Calling the rap method again

 }

 // This method prints the lyrics to my favorite song.

 public static void rap() {

 System.out.println("Now this is the story all about how");

 System.out.println("My life got flipped turned upside-down");

 }

}

Output:

Now this is the story all about how

My life got flipped turned upside-down

Now this is the story all about how

My life got flipped turned upside-down

Copyright 2008 by Pearson Education
17

Final cookie program
// This program displays a delicious recipe for baking cookies.
public class BakeCookies3 {
 public static void main(String[] args) {
 makeBatter();
 bake(); // 1st batch
 bake(); // 2nd batch
 decorate();
 }

 // Step 1: Make the cake batter.
 public static void makeBatter() {
 System.out.println("Mix the dry ingredients.");
 System.out.println("Cream the butter and sugar.");
 System.out.println("Beat in the eggs.");
 System.out.println("Stir in the dry ingredients.");
 }

 // Step 2: Bake a batch of cookies.
 public static void bake() {
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");
 }

 // Step 3: Decorate the cookies.
 public static void decorate() {
 System.out.println("Mix ingredients for frosting.");
 System.out.println("Spread frosting and sprinkles.");
 }
}

Copyright 2008 by Pearson Education
18

Methods calling methods
public class MethodsExample {

 public static void main(String[] args) {

 message1();

 message2();
 System.out.println("Done with main.");

 }

 public static void message1() {

 System.out.println("This is message1.");

 }

 public static void message2() {

 System.out.println("This is message2.");

 message1();
 System.out.println("Done with message2.");

 }

}

 Output:
This is message1.

This is message2.

This is message1.

Done with message2.

Done with main.

Copyright 2008 by Pearson Education
19

 When a method is called, the program's execution...

 "jumps" into that method, executing its statements, then

 "jumps" back to the point where the method was called.

public class MethodsExample {

 public static void main(String[] args) {

 message1();

 message2();

 System.out.println("Done with main.");

 }

 ...

}

public static void message1() {

 System.out.println("This is message1.");

}

public static void message2() {

 System.out.println("This is message2.");

 message1();

 System.out.println("Done with message2.");

}

public static void message1() {

 System.out.println("This is message1.");

}

Control flow

Copyright 2008 by Pearson Education
20

When to use methods
 Place statements into a static method if:

 The statements are related structurally, and/or

 The statements are repeated.

 You should not create static methods for:

 An individual println statement.

 Only blank lines. (Put blank printlns in main.)

 Unrelated or weakly related statements.

(Consider splitting them into two smaller methods.)

Copyright 2008 by Pearson Education

Drawing complex figures
with static methods

reading: 1.5
(Ch. 1 Case Study: DrawFigures)

exercises: #7-9

videos: Ch. 1 #2

Copyright 2008 by Pearson Education
22

Static methods question
 Write a program to print these figures using methods.

 / \

/ \

\ /

 ______/

\ /

 ______/

+--------+

 / \

/ \

| STOP |

\ /

 ______/

 / \

/ \

+--------+

Copyright 2008 by Pearson Education
23

Development strategy

 / \

/ \

\ /

 ______/

\ /

 ______/

+--------+

 / \

/ \

| STOP |

\ /

 ______/

 / \

/ \

+--------+

First version (unstructured):

 Create an empty program and main method.

 Copy the expected output into it, surrounding
each line with System.out.println syntax.

 Run it to verify the output.

Copyright 2008 by Pearson Education
24

Program version 1
public class Figures1 {

 public static void main(String[] args) {

 System.out.println(" ______");

 System.out.println(" / \\");

 System.out.println("/ \\");

 System.out.println("\\ /");

 System.out.println(" ______/");

 System.out.println();

 System.out.println("\\ /");

 System.out.println(" ______/");

 System.out.println("+--------+");

 System.out.println();

 System.out.println(" ______");

 System.out.println(" / \\");

 System.out.println("/ \\");

 System.out.println("| STOP |");

 System.out.println("\\ /");

 System.out.println(" ______/");

 System.out.println();

 System.out.println(" ______");

 System.out.println(" / \\");

 System.out.println("/ \\");

 System.out.println("+--------+");

 }

}

Copyright 2008 by Pearson Education
25

Development strategy 2

 / \

/ \

\ /

 ______/

\ /

 ______/

+--------+

 / \

/ \

| STOP |

\ /

 ______/

 / \

/ \

+--------+

Second version (structured, with redundancy):

 Identify the structure of the output.

 Divide the main method into static methods

based on this structure.

Copyright 2008 by Pearson Education
26

Output structure

 / \

/ \

\ /

 ______/

\ /

 ______/

+--------+

 / \

/ \

| STOP |

\ /

 ______/

 / \

/ \

+--------+

The structure of the output:

 initial "egg" figure

 second "teacup" figure

 third "stop sign" figure

 fourth "hat" figure

This structure can be represented by methods:

 egg

 teaCup

 stopSign

 hat

Copyright 2008 by Pearson Education
27

Program version 2
public class Figures2 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }

 public static void egg() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void teaCup() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println("+--------+");
 System.out.println();
 }
 ...

Copyright 2008 by Pearson Education
28

Program version 2, cont'd.
 ...

 public static void stopSign() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("| STOP |");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void hat() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("+--------+");
 }
}

Copyright 2008 by Pearson Education
29

Development strategy 3

 / \

/ \

\ /

 ______/

\ /

 ______/

+--------+

 / \

/ \

| STOP |

\ /

 ______/

 / \

/ \

+--------+

Third version (structured, without redundancy):

 Identify redundancy in the output, and create
methods to eliminate as much as possible.

 Add comments to the program.

Copyright 2008 by Pearson Education
30

Output redundancy

The redundancy in the output:

 egg top: reused on stop sign, hat

 egg bottom: reused on teacup, stop sign

 divider line: used on teacup, hat

This redundancy can be fixed by methods:

 eggTop

 eggBottom

 line

 / \

/ \

\ /

 ______/

\ /

 ______/

+--------+

 / \

/ \

| STOP |

\ /

 ______/

 / \

/ \

+--------+

Copyright 2008 by Pearson Education
31

Program version 3
// Suzy Student, CSE 138, Spring 2094
// Prints several figures, with methods for structure and redundancy.
public class Figures3 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }

 // Draws the top half of an an egg figure.
 public static void eggTop() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 }

 // Draws the bottom half of an egg figure.
 public static void eggBottom() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 }

 // Draws a complete egg figure.
 public static void egg() {
 eggTop();
 eggBottom();
 System.out.println();
 }

 ...

Copyright 2008 by Pearson Education
32

Program version 3, cont'd.
 ...

 // Draws a teacup figure.
 public static void teaCup() {
 eggBottom();
 line();
 System.out.println();
 }

 // Draws a stop sign figure.
 public static void stopSign() {
 eggTop();
 System.out.println("| STOP |");
 eggBottom();
 System.out.println();
 }

 // Draws a figure that looks sort of like a hat.
 public static void hat() {
 eggTop();
 line();
 }

 // Draws a line of dashes.
 public static void line() {
 System.out.println("+--------+");
 }
}

Copyright 2008 by Pearson Education
33

Data and expressions

reading: 2.1

self-check: 1-4

videos: Ch. 2 #1

Copyright 2008 by Pearson Education
34

Data types
 type: A category or set of data values.

 Constrains the operations that can be performed on data

 Many languages ask the programmer to specify types

 Examples: integer, real number, string

 Internally, computers store everything as 1s and 0s

 104 01101000

 "hi" 01101000110101

Copyright 2008 by Pearson Education
35

Java's primitive types

 primitive types: 8 simple types for numbers, text, etc.

 Java also has object types, which we'll talk about later

 Name Description Examples

 int integers 42, -3, 0, 926394

 double real numbers 3.1, -0.25, 9.4e3

 char single text characters 'a', 'X', '?', '\n'

 boolean logical values true, false

• Why does Java distinguish integers vs. real numbers?

Copyright 2008 by Pearson Education
36

Expressions
 expression: A value or operation that computes a value.

• Examples: 1 + 4 * 5

 (7 + 2) * 6 / 3

 42

 The simplest expression is a literal value.

 A complex expression can use operators and parentheses.

Copyright 2008 by Pearson Education
37

Arithmetic operators
 operator: Combines multiple values or expressions.

 + addition

 - subtraction (or negation)

 * multiplication

 / division

 % modulus (a.k.a. remainder)

 As a program runs, its expressions are evaluated.

 1 + 1 evaluates to 2

 System.out.println(3 * 4); prints 12

 How would we print the text 3 * 4 ?

Copyright 2008 by Pearson Education
38

Integer division with /

 When we divide integers, the quotient is also an integer.

 14 / 4 is 3, not 3.5

 3 4 52

 4) 14 10) 45 27) 1425

 12 40 135

 2 5 75

 54

 21

 More examples:

 32 / 5 is 6

 84 / 10 is 8

 156 / 100 is 1

 Dividing by 0 causes an error when your program runs.

Copyright 2008 by Pearson Education
39

Integer remainder with %
 The % operator computes the remainder from integer division.

 14 % 4 is 2

 218 % 5 is 3

 3 43

 4) 14 5) 218

 12 20

 2 18

 15

 3

 Applications of % operator:

 Obtain last digit of a number: 230857 % 10 is 7

 Obtain last 4 digits: 658236489 % 10000 is 6489

 See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

What is the result?

45 % 6

2 % 2

8 % 20

11 % 0

Copyright 2008 by Pearson Education
40

Precedence
 precedence: Order in which operators are evaluated.

 Generally operators evaluate left-to-right.

1 - 2 - 3 is (1 - 2) - 3 which is -4

 But */% have a higher level of precedence than +-

1 + 3 * 4 is 13

 6 + 8 / 2 * 3

 6 + 4 * 3

 6 + 12 is 18

 Parentheses can force a certain order of evaluation:

(1 + 3) * 4 is 16

 Spacing does not affect order of evaluation

1+3 * 4-2 is 11

Copyright 2008 by Pearson Education
41

Precedence examples

 1 * 2 + 3 * 5 % 4

 _/
 |
 2 + 3 * 5 % 4

 _/
 |
 2 + 15 % 4

 ___/
 |
 2 + 3

 ________/
 |
 5

 1 + 8 % 3 * 2 - 9

 _/
 |
1 + 2 * 2 - 9

 ___/
 |
1 + 4 - 9

 ______/
 |
 5 - 9

 _________/
 |
 -4

Copyright 2008 by Pearson Education
42

Precedence questions
 What values result from the following expressions?

 9 / 5

 695 % 20

 7 + 6 * 5

 7 * 6 + 5

 248 % 100 / 5

 6 * 3 - 9 / 4

 (5 - 7) * 4

 6 + (18 % (17 - 12))

Copyright 2008 by Pearson Education
43

Real numbers (type double)

 Examples: 6.022 , -42.0 , 2.143e17

 Placing .0 or . after an integer makes it a double.

 The operators +-*/%() all still work with double.

 / produces an exact answer: 15.0 / 2.0 is 7.5

 Precedence is the same: () before */% before +-

Copyright 2008 by Pearson Education
44

Real number example
 2.0 * 2.4 + 2.25 * 4.0 / 2.0

 ___/

 |

 4.8 + 2.25 * 4.0 / 2.0

 ___/

 |

 4.8 + 9.0 / 2.0

 _____/

 |

 4.8 + 4.5

 ____________/

 |

 9.3

Copyright 2008 by Pearson Education
45

Mixing types
 When int and double are mixed, the result is a double.

 4.2 * 3 is 12.6

 The conversion is per-operator, affecting only its operands.
 7 / 3 * 1.2 + 3 / 2

 _/
 |
 2 * 1.2 + 3 / 2

 ___/
 |
 2.4 + 3 / 2

 _/
 |
 2.4 + 1

 ________/
 |
 3.4

 3 / 2 is 1 above, not 1.5.

 2.0 + 10 / 3 * 2.5 - 6 / 4

 ___/
 |
2.0 + 3 * 2.5 - 6 / 4

 _____/
 |
2.0 + 7.5 - 6 / 4

 _/
 |
2.0 + 7.5 - 1

 _________/
 |
 9.5 - 1

 ______________/
 |
 8.5

Copyright 2008 by Pearson Education
46

String concatenation
 string concatenation: Using + between a string and

another value to make a longer string.

 "hello" + 42 is "hello42"
 1 + "abc" + 2 is "1abc2"
 "abc" + 1 + 2 is "abc12"
 1 + 2 + "abc" is "3abc"
 "abc" + 9 * 3 is "abc27"
 "1" + 1 is "11"
 4 - 1 + "abc" is "3abc"

 Use + to print a string and an expression's value together.

 System.out.println("Grade: " + (95.1 + 71.9) / 2);

• Output: Grade: 83.5

