Building Java Programs

Chapter 4
Lecture 4-1: Scanner; if/else

reading: 3.3 – 3.4, 4.1, 4.5
Interactive Programs

with Scanner

reading: 3.3 - 3.4
Interactive programs

interactive program: Reads input from the console.

- While the program runs, it asks the user to type input.
- The input typed by the user is stored in variables in the code.

- Can be tricky; users are unpredictable and misbehave.
- But interactive programs have more interesting behavior.
Scanner

- **Scanner**: An object that can read input from many sources.
 - Communicates with `System.in`
 - Can also read from files (Ch. 6), web sites, databases, ...

- The **Scanner class is found in the java.util package.**

  ```java
  import java.util.*; // so you can use Scanner
  ```

- **Constructing a Scanner object to read console input:**

  ```java
  Scanner name = new Scanner(System.in);
  ```

- **Example:**

  ```java
  Scanner console = new Scanner(System.in);
  ```
Scanner methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nextInt()</code></td>
<td>reads an <code>int</code> from the user and returns it</td>
</tr>
<tr>
<td><code>nextDouble()</code></td>
<td>reads a <code>double</code> from the user</td>
</tr>
<tr>
<td><code>next()</code></td>
<td>reads a one-word <code>String</code> from the user</td>
</tr>
<tr>
<td><code>nextLine()</code></td>
<td>reads a one-line <code>String</code> from the user</td>
</tr>
</tbody>
</table>

- Each method waits until the user presses Enter.
- The value typed by the user is returned.

```java
System.out.print("How old are you? "); // prompt
int age = console.nextInt();
System.out.println("You typed "+ age);
```

- **prompt**: A message telling the user what input to type.
import java.util.*; // so that I can use Scanner

public class UserInputExample {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);

 System.out.print("How old are you? ");
 int age = console.nextInt();

 int years = 65 - age;
 System.out.println(years + " years until retirement!");
 }
}

- Console (user input underlined):

 How old are you? 29
 36 years until retirement!
import java.util.*; // so that I can use Scanner

public class ScannerMultiply {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);
 System.out.print("Please type two numbers: ");
 int num1 = console.nextInt();
 int num2 = console.nextInt();
 int product = num1 * num2;
 System.out.println("The product is " + product);
 }
}

• Output (user input underlined):

Please type two numbers: 8 6
The product is 48

• The Scanner can read multiple values from one line.
Input tokens

- **token**: A unit of user input, as read by the `Scanner`.
 - Tokens are separated by *whitespace* (spaces, tabs, new lines).
 - How many tokens appear on the following line of input?
 23 John Smith 42.0 "Hello world" $2.50 " 19"

- When a token is not the type you ask for, it crashes.

```
System.out.print("What is your age? ");
int age = console.nextInt();
```

Output:

What is your age? **Timmy**
java.util.InputMismatchException
 at java.util.Scanner.next(Unknown Source)
 at java.util.Scanner.nextInt(Unknown Source)
 ...

"Timmy"
Scanners as parameters

- If many methods need to read input, declare a Scanner in main and pass it to the other methods as a parameter.

```java
public static void main(String[] args) {
    Scanner console = new Scanner(System.in);
    int sum = readSum3(console);
    System.out.println("The sum is " + sum);
}

// Prompts for 3 numbers and returns their sum.
public static int readSum3(Scanner console) {
    System.out.print("Type 3 numbers: ");
    int num1 = console.nextInt();
    int num2 = console.nextInt();
    int num3 = console.nextInt();
    return num1 + num2 + num3;
}
```
The *if/else* statement

reading: 4.1, 4.6
The *if* statement

Executes a block of statements only if a test is true

```java
if (test) {
    statement;
    ...
    statement;
}
```

- **Example:**
  ```java
double gpa = console.nextDouble();
if (gpa >= 2.0) {
    System.out.println("Application accepted.");
}
```
The *if/else* statement

Executes one block if a test is true, another if false

```java
if (test) {
    statement(s);
} else {
    statement(s);
}
```

- **Example:**
  ```java
double gpa = console.nextDouble();
if (gpa >= 2.0) {
    System.out.println("Welcome to Mars University!");
} else {
    System.out.println("Application denied.");
}
```
Relational expressions

- *if* statements and *for* loops both use logical tests.

```java
for (int i = 1; i <= 10; i++) {
   ...
}
if (i <= 10) {
   ...
}
```

- These are *boolean* expressions, seen in Ch. 5.

- Tests use *relational operators*:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
<th>Example</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>==</code></td>
<td>equals</td>
<td><code>1 + 1 == 2</code></td>
<td>true</td>
</tr>
<tr>
<td><code>!=</code></td>
<td>does not equal</td>
<td><code>3.2 != 2.5</code></td>
<td>true</td>
</tr>
<tr>
<td><code><</code></td>
<td>less than</td>
<td><code>10 < 5</code></td>
<td>false</td>
</tr>
<tr>
<td><code>></code></td>
<td>greater than</td>
<td><code>10 > 5</code></td>
<td>true</td>
</tr>
<tr>
<td><code><=</code></td>
<td>less than or equal to</td>
<td><code>126 <= 100</code></td>
<td>false</td>
</tr>
<tr>
<td><code>>=</code></td>
<td>greater than or equal to</td>
<td><code>5.0 >= 5.0</code></td>
<td>true</td>
</tr>
</tbody>
</table>
Misuse of if

What's wrong with the following code?

```java
Scanner console = new Scanner(System.in);
System.out.print("What percentage did you earn? ");
int percent = console.nextInt();
if (percent >= 90) {
    System.out.println("You got an A! ");
}
if (percent >= 80) {
    System.out.println("You got a B! ");
}
if (percent >= 70) {
    System.out.println("You got a C! ");
}
if (percent >= 60) {
    System.out.println("You got a D! ");
}
if (percent < 60) {
    System.out.println("You got an F! ");
}
```
Nested `if/else`

Chooses between outcomes using many tests

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else {
    statement(s);
}
```

- **Example:**
  ```java
  if (x > 0) {
      System.out.println("Positive");
  } else if (x < 0) {
      System.out.println("Negative");
  } else {
      System.out.println("Zero");
  }
  ```
Nested if/else/if

- If it ends with `else`, exactly one path must be taken.
- If it ends with `if`, the code might not execute any path.

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else if (test) {
    statement(s);
}
```

- Example:
  ```java
  if (place == 1) {
      System.out.println("Gold medal!"Mathf.Pow);
  } else if (place == 2) {
      System.out.println("Silver medal!" Mathf.Pow);
  } else if (place == 3) {
      System.out.println("Bronze medal.");
  }
  ```
Nested if structures

• exactly 1 path (mutually exclusive)

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else {
    statement(s);
}
```

• 0 or 1 path (mutually exclusive)

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else if (test) {
    statement(s);
}
```

• 0, 1, or many paths (independent tests; not exclusive)

```java
if (test) {
    statement(s);
}
if (test) {
    statement(s);
}
if (test) {
    statement(s);
}
```
Which nested `if/else`?

- (1) `if/if/if`
 - Whether a user is lower, middle, or upper-class based on income.
 - (2) `nested if / else if / else`

- (2) `nested if / else if / else`
 - Whether you made the dean's list (GPA ≥ 3.8) or honor roll (3.5-3.8).
 - (3) `nested if / else if`

- (3) `nested if / else / if`
 - Whether a number is divisible by 2, 3, and/or 5.
 - (1) `sequential if / if / if`

- (4) `nested if / else if / else if / else if / else`
 - Computing a grade of A, B, C, D, or F based on a percentage.
 - (2) `nested if / else if / else if / else if / else`
Nested *if/else* question

Formula for body mass index (BMI):

\[
BMI = \frac{weight}{height^2} \times 703
\]

Weight class

<table>
<thead>
<tr>
<th>BMI</th>
<th>Weight class</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 18.5</td>
<td>underweight</td>
</tr>
<tr>
<td>18.5 - 24.9</td>
<td>normal</td>
</tr>
<tr>
<td>25.0 - 29.9</td>
<td>overweight</td>
</tr>
<tr>
<td>30.0 and up</td>
<td>obese</td>
</tr>
</tbody>
</table>

- Write a program that produces output like the following:

This program reads data for two people and computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572
overweight
Person 2 BMI = 23.485824
normal
Difference = 4.3831045714285715
Nested if/else answer

// This program computes two people's body mass index (BMI) and
// compares them. The code uses Scanner for input, and parameters/returns.

import java.util.*; // so that I can use Scanner

public class BMI {
 public static void main(String[] args) {
 introduction();
 Scanner console = new Scanner(System.in);
 double bmi1 = person(console);
 double bmi2 = person(console);

 // report overall results
 report(1, bmi1);
 report(2, bmi2);
 System.out.println("Difference = " + Math.abs(bmi1 - bmi2));
 }

 // prints a welcome message explaining the program
 public static void introduction() {
 System.out.println("This program reads data for two people and");
 System.out.println("computes their body mass index (BMI)."));
 System.out.println();
 }

 ...
Nested if/else, cont'd.

// reads information for one person, computes their BMI, and returns it
public static double person(Scanner console) {
 System.out.println("Enter next person's information:");
 System.out.print("height (in inches)? ");
 double height = console.nextDouble();
 System.out.print("weight (in pounds)? ");
 double weight = console.nextDouble();
 System.out.println();
 System.out.println();
 double bodyMass = bmi(height, weight);
 return bodyMass;
}

// Computes/returns a person's BMI based on their height and weight.
public static double bmi(double height, double weight) {
 return (weight * 703 / height / height);
}

// Outputs information about a person's BMI and weight status.
public static void report(int number, double bmi) {
 System.out.println("Person " + number + " BMI = " + bmi);
 if (bmi < 18.5) {
 System.out.println("underweight");
 } else if (bmi < 25) {
 System.out.println("normal");
 } else if (bmi < 30) {
 System.out.println("overweight");
 } else {
 System.out.println("obese");
 }
}