
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 17: Classes and Objects

reading: 8.1 - 8.2

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

Clients of objects
  client program: A program that uses objects.

  Example: Shapes is a client of DrawingPanel and Graphics.

Shapes.java (client program)
public class Shapes {
 main(String[] args) {
 new DrawingPanel(...)
 new DrawingPanel(...)
 ...
 }
}

DrawingPanel.java (class)
public class DrawingPanel {
 ...
}

Copyright 2010 by Pearson Education
4

A programming problem
  Given a file of cities' (x, y) coordinates,

which begins with the number of cities:

6
50 20
90 60
10 72
74 98
5 136
150 91

  Write a program to draw the cities on a DrawingPanel, then
simulates an earthquake that turns all cities red that are within a
given radius:
Epicenter x? 100
Epicenter y? 100
Affected radius? 75

Copyright 2010 by Pearson Education
5

A bad solution

Scanner input = new Scanner(new File("cities.txt"));
int cityCount = input.nextInt();
int[] xCoords = new int[cityCount];
int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {
 xCoords[i] = input.nextInt(); // read each city
 yCoords[i] = input.nextInt();
}
...

  parallel arrays: 2+ arrays with related data at same indexes.
  Considered poor style.

Copyright 2010 by Pearson Education
6

Observations
  The data in this problem is a set of points.
  It would be better stored as Point objects.

  A Point would store a city's x/y data.

  We could compare distances between Points
to see whether the earthquake hit a given city.

  Each Point would know how to draw itself.

  The overall program would be shorter and cleaner.

Copyright 2010 by Pearson Education
7

Classes and objects
 class: A program entity that represents either:

 1. A program / module, or
 2. A template for a new type of objects.

  The DrawingPanel class is a template for creating
DrawingPanel objects.

 object: An entity that combines state and behavior.
  object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

Copyright 2010 by Pearson Education
8

Blueprint analogy
iPod blueprint

state:
 current song
 volume
 battery life
behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #1
state:
 song = "1,000,000 Miles"
 volume = 17
 battery life = 2.5 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #2
state:
 song = "Letting You"
 volume = 9
 battery life = 3.41 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #3
state:
 song = "Discipline"
 volume = 24
 battery life = 1.8 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

creates

Copyright 2010 by Pearson Education
9

Abstraction
  abstraction: A distancing between ideas and details.

  We can use objects without knowing how they work.

  abstraction in an iPod:
  You understand its external behavior (buttons, screen).
  You don't understand its inner details, and you don't need to.

Copyright 2010 by Pearson Education
10

The Object Concept
  procedural programming: Programs that perform their

behavior as a series of steps to be carried out

  object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects
  Takes practice to understand the object concept

Copyright 2010 by Pearson Education
11

Our task
  In the following slides, we will implement a Point class

as a way of learning about defining classes.

  We will define a type of objects named Point.
  Each Point object will contain x/y data called fields.
  Each Point object will contain behavior called methods.
  Client programs will use the Point objects.

Copyright 2010 by Pearson Education
12

Point objects (desired)
 Point p1 = new Point(5, -2);
 Point p2 = new Point(); // origin, (0, 0)

  Data in each Point object:

  Methods in each Point object:
Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx,
dy)

adjusts the point's x and y by the given
amounts

distance(p) how far away the point is from point p

draw(g) displays the point on a drawing panel

Field
name

Description

x the point's x-
coordinate

y the point's y-
coordinate

Copyright 2010 by Pearson Education
13

Point class as blueprint

  The class (blueprint) will describe how to create objects.
  Each object will contain its own data and methods.

Point class
state:
int x, y

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #1
state:
x = 5, y = -2

behavior:
setLocation(int x, int
y)
translate(int dx, int
dy)
distance(Point p)
draw(Graphics g)

Point object #2
state:
x = -245, y = 1897

behavior:
setLocation(int x, int
y)
translate(int dx, int
dy)
distance(Point p)
draw(Graphics g)

Point object #3
state:
x = 18, y = 42

behavior:
setLocation(int x, int
y)
translate(int dx, int
dy)
distance(Point p)
draw(Graphics g)

Copyright 2010 by Pearson Education
14

Object state:
Fields

reading: 8.2

Copyright 2010 by Pearson Education
15

Point class, version 1
public class Point {
 int x;
 int y;
}

  Save this code into a file named Point.java.

  The above code creates a new type named Point.
  Each Point object contains two pieces of data:

  an int named x, and
  an int named y.

  Point objects do not contain any behavior (yet).

Copyright 2010 by Pearson Education
16

Fields
  field: A variable inside an object that is part of its state.

  Each object has its own copy of each field.

  Declaration syntax:

 type name;

  Example:

 public class Student {
 String name; // each Student object has a
 double gpa; // name and gpa field
 }

Copyright 2010 by Pearson Education
17

Accessing fields
  Other classes can access/modify an object's fields.

  access: variable.field

  modify: variable.field = value;

  Example:
Point p1 = new Point();
Point p2 = new Point();
System.out.println("the x-coord is " + p1.x); // access
p2.y = 13; // modify

Copyright 2010 by Pearson Education
18

A class and its client
  Point.java is not, by itself, a runnable program.

  A class can be used by client programs.

PointMain.java (client program)
public class PointMain {
 main(String args) {
 Point p1 = new Point();
 p1.x = 7;
 p1.y = 2;

 Point p2 = new Point();
 p2.x = 4;
 p2.y = 3;
 ...
 }
}

Point.java (class of
objects)

public class Point {
 int x;
 int y;
}

x 7 y 2

x 4 y 3

Copyright 2010 by Pearson Education
19

PointMain client example
public class PointMain {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point();
 p1.y = 2;
 Point p2 = new Point();
 p2.x = 4;

 System.out.println(p1.x + ", " + p1.y); // 0, 2

 // move p2 and then print it
 p2.x += 2;
 p2.y++;
 System.out.println(p2.x + ", " + p2.y); // 6, 1
 }
}

Copyright 2010 by Pearson Education
20

Object behavior:
Methods

reading: 8.3

Copyright 2010 by Pearson Education
21

Client code redundancy
  Suppose our client program wants to draw Point objects:

// draw each city
Point p1 = new Point();
p1.x = 15;
p1.y = 37;
g.fillOval(p1.x, p1.y, 3, 3);
g.drawString("(" + p1.x + ", " + p1.y + ")", p1.x, p1.y);

  To draw other points, the same code must be repeated.
  We can remove this redundancy using a method.

Copyright 2010 by Pearson Education
22

Eliminating redundancy, v1
  We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.
public static void draw(Point p, Graphics g) {
 g.fillOval(p.x, p.y, 3, 3);
 g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);
}

  main would call the method as follows:
draw(p1, g);

Copyright 2010 by Pearson Education
23

Problems with static solution
  We are missing a major benefit of objects: code reuse.

  Every program that draws Points would need a draw method.

  The syntax doesn't match how we're used to using
objects.

 draw(p1, g); // static (bad)

  The point of classes is to combine state and behavior.
  The draw behavior is closely related to a Point's data.

  The method belongs inside each Point object.

 p1.draw(g); // inside the object (better)

Copyright 2010 by Pearson Education
24

Instance methods
  instance method (or object method): Exists inside

each object of a class and gives behavior to each object.

 public type name(parameters) {
 statements;
 }

  same syntax as static methods, but without static keyword

 Example:

 public void shout() {
 System.out.println("HELLO THERE!");
 }

Copyright 2010 by Pearson Education
25

Instance method example
public class Point {
 int x;
 int y;

 // Draws this Point object with the given pen.
 public void draw(Graphics g) {
 ...
 }
}

  The draw method no longer has a Point p parameter.
  How will the method know which point to draw?

  How will the method access that point's x/y data?

Copyright 2010 by Pearson Education
26

  Each Point object has its own copy of the draw method, which
operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.draw(g);
p2.draw(g);

public void draw(Graphics g) {
 // this code can see p1's x and y
}

Point objects w/ method

x 7 y 2

x 4 y 3
public void draw(Graphics g) {
 // this code can see p2's x and y
}

p2

p1

Copyright 2010 by Pearson Education
27

The implicit parameter
  implicit parameter:

The object on which an instance method is called.

  During the call p1.draw(g);
the object referred to by p1 is the implicit parameter.

  During the call p2.draw(g);
the object referred to by p2 is the implicit parameter.

  The instance method can refer to that object's fields.
  We say that it executes in the context of a particular object.

  draw can refer to the x and y of the object it was called on.

Copyright 2010 by Pearson Education
28

Point class, version 2
public class Point {
 int x;
 int y;

 // Changes the location of this Point object.
 public void draw(Graphics g) {
 g.fillOval(x, y, 3, 3);
 g.drawString("(" + x + ", " + y + ")", x, y);
 }
}

  Each Point object contains a draw method that draws that
point at its current x/y position.

Copyright 2010 by Pearson Education
29

Class method questions
  Write a method translate that changes a Point's

location by a given dx, dy amount.

  Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

 Use the formula:

  Modify the Point and client code to use these methods.

Copyright 2010 by Pearson Education
30

Class method answers
public class Point {
 int x;
 int y;

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }
}

