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Building Java Programs 

Chapter 8 
Lecture 17: Classes and Objects 

reading: 8.1 - 8.2 
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Clients of objects 
  client program: A program that uses objects. 

  Example: Shapes is a client of DrawingPanel and Graphics. 

Shapes.java (client program) 
public class Shapes { 
    main(String[] args) { 
        new DrawingPanel(...) 
        new DrawingPanel(...) 
        ... 
    } 
} 

DrawingPanel.java (class) 
public class DrawingPanel { 
    ... 
} 
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A programming problem 
  Given a file of cities' (x, y) coordinates, 

which begins with the number of cities: 

6 
50 20 
90 60 
10 72 
74 98 
5 136 
150 91 

  Write a program to draw the cities on a DrawingPanel, then 
simulates an earthquake that turns all cities red that are within a 
given radius: 
Epicenter x? 100 
Epicenter y? 100 
Affected radius? 75 
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A bad solution 

Scanner input = new Scanner(new File("cities.txt")); 
int cityCount = input.nextInt(); 
int[] xCoords = new int[cityCount]; 
int[] yCoords = new int[cityCount]; 

for (int i = 0; i < cityCount; i++) { 
    xCoords[i] = input.nextInt();   // read each city 
    yCoords[i] = input.nextInt(); 
} 
... 

  parallel arrays: 2+ arrays with related data at same indexes. 
  Considered poor style. 
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Observations 
  The data in this problem is a set of points. 
  It would be better stored as Point objects. 

  A Point would store a city's x/y data. 

  We could compare distances between Points 
to see whether the earthquake hit a given city. 

  Each Point would know how to draw itself. 

  The overall program would be shorter and cleaner. 
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Classes and objects 
 class: A program entity that represents either: 

 1.  A program / module,  or 
 2.  A template for a new type of objects. 

  The DrawingPanel class is a template for creating 
DrawingPanel objects. 

 object: An entity that combines state and behavior. 
  object-oriented programming (OOP): Programs that 

perform their behavior as interactions between objects. 
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Blueprint analogy 
iPod blueprint 

state: 
  current song 
  volume 
  battery life 
behavior: 
  power on/off 
  change station/song 
  change volume 
  choose random song 

iPod #1 
state: 
  song = "1,000,000 Miles" 
  volume = 17 
  battery life = 2.5 hrs 

behavior: 
  power on/off 
  change station/song 
  change volume 
  choose random song 

iPod #2 
state: 
  song = "Letting You" 
  volume = 9 
  battery life = 3.41 hrs 

behavior: 
  power on/off 
  change station/song 
  change volume 
  choose random song 

iPod #3 
state: 
  song = "Discipline" 
  volume = 24 
  battery life = 1.8 hrs 

behavior: 
  power on/off 
  change station/song 
  change volume 
  choose random song 

creates 
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Abstraction 
  abstraction: A distancing between ideas and details. 

  We can use objects without knowing how they work. 

  abstraction in an iPod: 
  You understand its external behavior (buttons, screen). 
  You don't understand its inner details, and you don't need to. 
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The Object Concept 
  procedural programming:  Programs that perform their 

behavior as a series of steps to be carried out 

  object-oriented programming (OOP): Programs that 
perform their behavior as interactions between objects 
  Takes practice to understand the object concept 
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Our task 
  In the following slides, we will implement a Point class 

as a way of learning about defining classes. 

  We will define a type of objects named Point. 
  Each Point object will contain x/y data called fields. 
  Each Point object will contain behavior called methods. 
  Client programs will use the Point objects. 
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Point objects (desired) 
 Point p1 = new Point(5, -2); 
 Point p2 = new Point();          // origin, (0, 0) 

  Data in each Point object: 

  Methods in each Point object: 
Method name Description 

setLocation(x, y) sets the point's x and y to the given values 

translate(dx, 
dy) 

adjusts the point's x and y by the given 
amounts 

distance(p) how far away the point is from point p 

draw(g) displays the point on a drawing panel 

Field 
name 

Description 

x the point's x-
coordinate 

y the point's y-
coordinate 
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Point class as blueprint 

  The class (blueprint) will describe how to create objects. 
  Each object will contain its own data and methods. 

Point class 
state: 
int x,  y 

behavior: 
setLocation(int x, int y) 
translate(int dx, int dy) 
distance(Point p) 
draw(Graphics g) 

Point object #1 
state: 
x = 5,   y = -2 

behavior: 
setLocation(int x, int 
y) 
translate(int dx, int 
dy) 
distance(Point p) 
draw(Graphics g) 

Point object #2 
state: 
x = -245,   y = 1897 

behavior: 
setLocation(int x, int 
y) 
translate(int dx, int 
dy) 
distance(Point p) 
draw(Graphics g) 

Point object #3 
state: 
x = 18,   y = 42 

behavior: 
setLocation(int x, int 
y) 
translate(int dx, int 
dy) 
distance(Point p) 
draw(Graphics g) 
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Object state: 
Fields 

reading: 8.2 
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Point class, version 1 
public class Point { 
    int x; 
    int y; 
} 

  Save this code into a file named Point.java. 

  The above code creates a new type named Point. 
  Each Point object contains two pieces of data: 

  an int named x, and 
  an int named y. 

  Point objects do not contain any behavior (yet). 
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Fields 
  field: A variable inside an object that is part of its state. 

  Each object has its own copy of each field. 

  Declaration syntax: 

 type name; 

  Example: 

 public class Student { 
     String name;    // each Student object has a  
     double gpa;     // name and gpa field 
 } 
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Accessing fields 
  Other classes can access/modify an object's fields. 

  access:  variable.field 

  modify:  variable.field = value; 

  Example: 
Point p1 = new Point(); 
Point p2 = new Point(); 
System.out.println("the x-coord is " + p1.x);   // access 
p2.y = 13;                                      // modify 
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A class and its client 
  Point.java is not, by itself, a runnable program. 

  A class can be used by client programs. 

PointMain.java (client program) 
public class PointMain { 
  main(String args) { 
    Point p1 = new Point(); 
    p1.x = 7; 
    p1.y = 2; 

    Point p2 = new Point(); 
    p2.x = 4; 
    p2.y = 3; 
    ... 
  } 
} 

Point.java (class of 
objects) 

public class Point { 
    int x; 
    int y; 
} 

x 7 y 2 

x 4 y 3 
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PointMain client example 
public class PointMain { 
    public static void main(String[] args) { 
        // create two Point objects 
        Point p1 = new Point(); 
        p1.y = 2; 
        Point p2 = new Point(); 
        p2.x = 4; 

        System.out.println(p1.x + ", " + p1.y);   // 0, 2 

        // move p2 and then print it 
        p2.x += 2; 
        p2.y++; 
        System.out.println(p2.x + ", " + p2.y);   // 6, 1 
    } 
} 
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Object behavior: 
Methods 

reading: 8.3 
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Client code redundancy 
  Suppose our client program wants to draw Point objects: 

// draw each city 
Point p1 = new Point(); 
p1.x = 15; 
p1.y = 37; 
g.fillOval(p1.x, p1.y, 3, 3); 
g.drawString("(" + p1.x + ", " + p1.y + ")", p1.x, p1.y); 

  To draw other points, the same code must be repeated. 
  We can remove this redundancy using a method. 
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Eliminating redundancy, v1 
  We can eliminate the redundancy with a static method: 

// Draws the given point on the DrawingPanel. 
public static void draw(Point p, Graphics g) { 
    g.fillOval(p.x, p.y, 3, 3); 
    g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y); 
} 

  main would call the method as follows: 
draw(p1, g); 
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Problems with static solution 
  We are missing a major benefit of objects: code reuse. 

  Every program that draws Points would need a draw method. 

  The syntax doesn't match how we're used to using 
objects. 

 draw(p1, g);    // static (bad) 

  The point of classes is to combine state and behavior. 
  The draw behavior is closely related to a Point's data. 

  The method belongs inside each Point object. 

 p1.draw(g);     // inside the object (better) 
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Instance methods 
  instance method (or object method): Exists inside 

each object of a class and gives behavior to each object. 

 public type name(parameters) { 
     statements; 
 } 

  same syntax as static methods, but without static keyword 

 Example: 

 public void shout() { 
     System.out.println("HELLO THERE!"); 
 } 
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Instance method example 
public class Point { 
    int x; 
    int y; 

    // Draws this Point object with the given pen. 
    public void draw(Graphics g) { 
        ... 
    } 
} 

  The draw method no longer has a Point p  parameter.   
  How will the method know which point to draw? 

  How will the method access that point's x/y data? 
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  Each Point object has its own copy of the draw method, which 
operates on that object's state: 

Point p1 = new Point(); 
p1.x = 7; 
p1.y = 2; 

Point p2 = new Point(); 
p2.x = 4; 
p2.y = 3; 

p1.draw(g); 
p2.draw(g); 

public void draw(Graphics g) { 
    // this code can see p1's x and y 
} 

Point objects w/ method 

x 7 y 2 

x 4 y 3 
public void draw(Graphics g) { 
    // this code can see p2's x and y 
} 

p2 

p1 
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The implicit parameter 
  implicit parameter: 

The object on which an instance method is called. 

  During the call p1.draw(g);  
the object referred to by p1 is the implicit parameter. 

  During the call p2.draw(g);  
the object referred to by p2 is the implicit parameter. 

  The instance method can refer to that object's fields. 
  We say that it executes in the context of a particular object. 

  draw can refer to the x and y of the object it was called on. 
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Point class, version 2 
public class Point { 
    int x; 
    int y; 

    // Changes the location of this Point object. 
    public void draw(Graphics g) { 
        g.fillOval(x, y, 3, 3); 
        g.drawString("(" + x + ", " + y + ")", x, y); 
    } 
} 

  Each Point object contains a draw method that draws that 
point at its current x/y position. 
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Class method questions 
  Write a method translate that changes a Point's 

location by a given dx, dy amount. 

  Write a method distanceFromOrigin that returns the 
distance between a Point and the origin, (0, 0). 

 Use the formula: 

  Modify the Point and client code to use these methods. 



Copyright 2010 by Pearson Education 
30 

Class method answers 
public class Point { 
    int x; 
    int y; 

    public void translate(int dx, int dy) { 
        x = x + dx; 
        y = y + dy; 
    } 

    public double distanceFromOrigin() { 
        return Math.sqrt(x * x + y * y); 
    } 
} 


