CSE 142, Summer 2013

Chapter 9
Lecture 9-1: Inheritance, Polymorphism;

reading: 9.2

~ Copyright 2008 by Pearson Education

I STARTED A TASK
FORCE TO ELIMINATE
REDUNDANCIES IN OUR
INTERNAL PROCESSES.

S22 ©2001 Scott Adams, INC. Dest. by Universal Uckck

Dilbert.com DilbertCartoonist@gmail.com

—

e

~ Copyright 2008 by Pearson Education

/// o . .
The software crisis

* software engineering: The practice of developing,
designing, documenting, testing large computer programs.

e Large-scale projects face many issues:
» programmers working together

getting code finished on time

avoiding redundant code

finding and fixing bugs

maintaining, reusing existing code

- code reuse: The practice of writing program code once
and using it in many contexts.

~ Copyright 2008 by Pearson Education

B

///_
Law firm employee analogy

e common rules: hours, vacation, benefits, regulations ...

» all employees attend a common orientation to learn general
company rules

» each employee receives a 20-page manual of common rules

* each subdivision also has specific rules:
» employee receives a smaller (1-3 page) manual of these rules

» smaller manual adds some new rules and also changes some
rules from the large manual

Employee
20-page manual
PN

Lawyer Secretary Marketer
2-page manual 1-page manual 3-page manual

T

LegalSecretary
1-page manual 4

~ Copyright 2008 by Pearson Education

/ﬂp

geparating behavior

* Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

s

* Some advantages of the separate manuals:
 maintenance: Only one update if a common rule changes.
» locality: Quick discovery of all rules specific to lawyers.

e Some key ideas from this example:
» General rules are useful (the 20-page manual).
» Specific rules that may override general ones are also useful.

Copyright 2008 by Pearson Education

el

Is-a relationships, hierarchies

* is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of another.

» every marketer is an employee
» every legal secretary is a secretary

* inheritance hierarchy: A set of classes connected by is-a
relationships that can share common code.

Closed Figure Open Figurs

“

Copyright 2008 by Pearson Education

e —

Employee regulations

* Consider the following employee regulations:
» Employees work 40 hours / week.

« Employees make $40,000 per year, except legal secretaries who
make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

« Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

» Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

g

* Each type of employee has some unique behavior:
» Lawyers know how to sue.
» Marketers know how to advertise.
» Secretaries know how to take dictation.
» Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education

 —
An Employee class

// A class to represent employees in general (20-page manual).
public class Employee {
3B e A K oA w0 7o ol e B W AR
return 40; // works 40 hours / week

}

public double getSalary () {
et e N e // $40,000.00 / year

}

public int getVacationDays () {
refurn oy // 2 weeks' paid vacation

}

oR 08 o BT eI A At Y 010 i o { < R Tl Ve Nl 1 A A o 0% LA e A1) RV
return "yellow"; // use the yellow form

}

» Exercise: Implement class secretary, based on the previous
employee requlations. (Secretaries can take dictation.)

]

_ Copyright 2008 by Pearson Education

B

 —
Redundant Secretary class

// A redundant class to represent secretaries.
public class Secretary {
oRol oY M ek M ok sio r=Viul fe) bhiavs 1 A K |
return 40; // works 40 hours / week

}

public double getSalary () {
et e N e // $40,000.00 / year

}

public int getVacationDays () {
refurn oy // 2 weeks' paid vacation

}

oR 08 o BT eI A At Y 010 i o { < R Tl Ve Nl 1 A A o 0% LA e A1) RV
return "yellow"; // use the yellow form

}

public void takeDictation(String text) {
System.out.println ("Taking dictation of text: " + text);

}

~ Copyright 2008 by Pearson Education

Desire for code-sharing

* takeDictation is the only unique behavior in Secretary.

» We'd like to be able to say:

// A class to represent secretaries.

public class Secretary {
copy all the contents from the Employee class;

public void takeDictation(String text) {

System.out.println ("Taking dictation of text: " + text);
}

10

~ " Copyright 2008 by Pearson Education

e —

Inheritance

* inheritance: A way to form new classes based on existing
classes, taking on their attributes/behavior.

* a way to group related classes
* a way to share code between two or more classes

* One class can extend another, absorbing its data/behavior.
» superclass: The parent class that is being extended.

» subclass: The child class that extends the superclass and
inherits its behavior.

« Subclass gets a copy of every field and method from superclass

g 11
Copyright 2008 by Pearson Education

s

e o : V
Inheritance syntax

public class name extends superclass {

 Example:

public class Secretary extends Employee ({

* By extending Employee, each Secretary object now:

* receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

e can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education

531!

B

Improved Secretary code

// A class to represent secretaries.
public class Secretary extends Employee {
public void takeDictation(String text) {
SRIA A Th Y oY A A G A RA N A Y A W AW oA N 0O TG B Y o = ST AT R VAT AT R o A WA s A) S5 G e B

}

* Now we only write the parts unique to each type.

e Secretary inherits getHours, getSalary, getVacationDays,
and getVacationForm methods from Employee.

* Secretary adds the takeDictation method.

573

__ Copyright 2008 by Pearson Education

/ﬂp

e

Implementing Lawyer

e Consider the following lawyer regulations:
» Lawyers who get an extra week of paid vacation (a total of 3).
» Lawyers use a pink form when applying for vacation leave.
» Lawyers have some unique behavior: they know how to sue.

s

* Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

e 14
Copyright 2008 by Pearson Education

——
Overriding methods

* override: To write a new version of a method in a subclass
that replaces the superclass's version.

» No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee class
public String getVacationForm() ({
return "pink";

}

» Exercise: Complete the Lawyer class.
- (3 weeks vacation, pink vacation form, can sue)

— 15
Copyright 2008 by Pearson Education

Lawyer class

// A class to represent lawyers.
public class Lawyer extends Employee {
// overrides getVacationForm from Employee class
public String getVacationForm() {
return "pink";

}

// overrides getVacationDays from Employee class
Jea ¥ ME M e b an wie Pon et Ve s N sy au B RVas M AU

return 15; // 3 weeks vacation
}
[SNBH ¥ MeAVAT dom Ve RS BT S A VA
System.out.println("I'll see you in court!");

}

o Exercise: Complete the Marketer class. Marketers make

$10,000 extra ($50,000 total) and know how to advertise.

]

_ Copyright 2008 by Pearson Education

16

S A SR A

| m—

Marketer class

// A class to represent marketers.
public class Marketer extends Employee ({
public void advertise () {
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
e e 08 0 // $50,000.00 / year

}

i 17
__ Copyright 2008 by Pearson Education

s

//7 _ | " "
Levels of inheritance

e Multiple levels of inheritance in a hierarchy are allowed.

« Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

public class LegalSecretary extends Secretary ({

» Exercise: Complete the LegalSecretary class.

Copyright 2008 by Pearson Education

-
LegalSecretary class

// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
public void filelegalBriefs () {
SRVAS R The M) DA WA o A A A Y KA W L A MR U RARY 6 PR s R A S Wy VYA Vi o S

}

public double getSalary () {
e g U B S Y B // $45,000.00 / year

}

S

" Copyright 2008 by Pearson Education

 —
Calling overridden methods

e Subclasses can call overridden methods with super
super . method (parameters)

» Example:

public class LegalSecretary extends Secretary {
pulbiviandonblievgetSamhvawarin
double baseSalary = super.getSalary();
return baseSalary + 5000.0;

. Copyright 2008 by Pearson Education

el

—

Inheritance and constructors

* Imagine that we want to give employees more vacation
days the longer they've been with the company.

» For each year worked, we'll award 2 additional vacation days.

« When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

e This will require us to modify our Employee class and add
some new state and behavior.

» Exercise: Make necessary modifications to the Employee class.

k) 21
: Copyright 2008 by Pearson Education

B

Modified Employee class

public class Employee {
private int years;

public Employee (int initialYears) {
years = initialYears;

}

public int getHours () {
return 40;

}

publicrdoublevgetSalaryiy
return 50000.0;
}

P resminErgetVacarionbaaiied
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

D2

~ Copyright 2008 by Pearson Education

——

g

Problem with constructors

* Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Wiy M na eh s e el U Re s i e N e s e vl e T
symbol s constructor Employee ()
location: class Employee

public class Lawyer extends Employee {

A

» The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

 The long explanation: (next slide)

i Copyright 2008 by Pearson Education

23

it o . 4
The detailed explanation

» Constructors are not inherited.
o Subclasses don't inherit the Employee (int) constructor.

e Subclasses receive a default constructor that contains:

public Lawyer () {
super () ; // calls Employee () constructor

e But our Employee (int) replaces the default Employee ().

» The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

— 24
Copyright 2008 by Pearson Education

B

Calling superclass constructor

super (parameters) ;

» Example:
public class Lawyer extends Employee {
public Lawyer (int years) {
super (years); // calls Employee constructor

}

}

» The super call must be the first statement in the constructor.

o Exercise: Make a similar modification to the Marketer class.

. Copyright 2008 by Pearson Education

B

Modified Marketer class

// A class to represent marketers.
public class Marketer extends Employee ({
public Marketer (int years) {
super (years) ;

}

o DA VAN SO M Ad 27 8 A A S e 1T W R)
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
return super.getSalary() + 10000.0;

}

» Exercise: Modify the secretary subclass.
« Secretaries' years of employment are not tracked.
« They do not earn extra vacation for years worked.

— 26
; Copyright 2008 by Pearson Education

B

Modified Secretary class

// A class to represent secretaries.
public class Secretary extends Employee {
public Secretary () {
super (0) ;
}

o DA VANV By A S o R B e A MBI AN A e A R 26 S W A A R
SRR R IR Y N AN S A WA A W AV A W = O 0 G 7 R Y o = W I A Y VAR A YRR) R A A S e S

}

» Since secretary doesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.

« Its default constructor calls the secretary () constructor.

; Copyright 2008 by Pearson Education

——

Inheritance and fields

e Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {

g

public double getSalary () {
return super.getSalary() + 5000 * years;

}

)
* Does not work; the error is the following:

Lawyer.java:/7: years has private access 1n Employee
return super.getSalary() + 5000 * years;

A

* Private fields cannot be directly accessed from subclasses.
 One reason: So that subclassing can't break encapsulation.
« How can we get around this limitation?

= 28
: Copyright 2008 by Pearson Education

Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee {
private int years;

public Employee(int initialYears) {
years = 1nitialYears;

}

public int getYears() ({
return years;
}

}

public class Lawyer extends Employee ({
public Lawyer (int years) {
super (years);
}

A A RN B e S Y B et
return super.getSalary() + 5000 * getYears():
}

. Copyright 2008 by Pearson Education

/ﬂp

Revisiting Secretary
* The secretary class currently has a poor solution.

» We set all Secretaries to O years because they do not get a
vacation bonus for their service.

o If we call getyears on a Secretary object, we'll always get 0.

e This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

s

e Redesign our Employee class to allow for a better solution.

30
Copyright 2008 by Pearson Education

Improved Employee code

o Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
private int years;

AN A N G MRV S T S Y i e s e R e R

years = initialYears;
}

pubievvip b e tararhonbaiaaa v
return 10 + getSeniorityBonus()
}

// vacation days given for each year in the company
public int getSeniorityBonus () {
return 2 * years;

}
: S

» How does this help us improve the Secretary?

- 31
Copyright 2008 by Pearson Education

——
Improved Secretary code

- Secretary can selectively override getSeniorityBonus;
when getVacationDays runs, it will use the new version.
 Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {
super (years) ;
}
// Secretaries don't get a bonus for their years of service.

public int getSeniorityBonus () {
return O;

}

S SYNA N GAAA TR o0 M B Y D S Y- A W e 6T Ao Ay A MUY S IAIEY o G L AR

System.out.println ("Taking dictation of text: " + text);

}
}
32

~ " Copyright 2008 by Pearson Education

é/ Polymorphism

 polymorphism: Ability for the same code to be used with
different types of objects and behave differently with each.

 System.out.println can print any type of object.
« Each one displays in its own way on the console.

» CritterMain can interact with any type of critter.
- Each one moves, fights, etc. in its own way.

- 33
Copyright 2008 by Pearson Education

—

Coding with polymorphism
e A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

* You can call any methods from the Employee class on ed.

e When a method is called on ed, it behaves as a Lawyer.

System.out.println (ed.getSalary()) ; // 50000.0
System.out.println (ed.getVacationForm()) ; // pink

£ 34
Copyright 2008 by Pearson Education

’//gﬁﬁ””#////f/, =
Polymorphism and parameters

* You can pass any subtype of a parameter's type.

public class EmployeeMain {
joabYofl Ak sy oo s vae WM O v i = MM W Moul s ta o WAR S o No Ml
Lawyer lisa = new Lawyer();
Secretary steve = new Secretary();

printInfo(lisa) ;
) \

public static void printInfo (Employee empl) ({

System.out.println ("salary: " + empl.getSalary()):;
System.out.println("v.days: " + empl.getVacationDays()):
e AV D R i e B R B O e B A e il b s 9 A AT A A Ao MR R A GEA B
System.out.println();
}

}

OUTPUT:

Seavenr e S AN N A AR O YR B TR

VLN A AT A Wk el

v.form: pink v.form: yellow

35
Copyright 2008 by Pearson Education

Polymorphism and arrays

e Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
R NN M A T AL 108 Mg oo Ty ST M eV W s vy o
Employee[] e = { new Lawyer(), new Secretary(),
new Marketer (), new LegalSecretary() 1},

50 N 0 B0 Y e M U A M N AN = Y o Yo ol 0 AR I o Y M
System.out.println("salary: " + e[i].getSalary());
System.out.println("v.days: " + e[i].getVacationDays())
SRS SN oAb R o hais o B A 1Y (A -

}

Output:

NS VS M A
\ e =By At 1)
SR R ma AR S A AYAY D)
v.days: 10
salary: 60000.0
v.days: 10
salary: 55000.0
v.days: 10

36
Copyright 2008 by Pearson Education

A polymorphism problem

e Suppose that the following four classes have been declared:

S30d 0 A eI e s RV R I o M
P s st e e e e e
System.out.println("foo 1");
}

pablTeiveordrmethod 29
Syvetenyonbuprintiny R ooty

}

public String toString() {
I 2 A I AV Ve s
}
}

publicviclass ' Bar extends "Foo
public void method2 () {
Syvsbenvonbivprinbin Y bar 2%

}

. Copyright 2008 by Pearson Education

B

A polymorphism problem

public class Baz extends Foo {
pubiieyarairdymethiodiiiiyid
R e VB S ST e Mg S R SR

}

00 90 1 By o s R 6 G MV B A i 9 70 A1 Y A
return "baz";
}

}

public class Mumble extends Baz {
public void method2 () {
System.out.println ("mumble 2");

}
}

» What would be the output of the following client code?

Foo[] pity = {new Baz (), new Bar (), new Mumble (), new Foo() };
i o hargied n b sl Bl B ML U i o i 920 (Y = R a0 Aind n - eioh B i U
System.out.println(pity[i]):;
pity[i] .methodl () ;
pity[i] .method2 () ;
System.out.println();

Copyright 2008 by Pearson Education

B

Diagramming the classes

* Add classes from top (superclass) to bottom (subclass).

e Include all inherited methods.

Foo
method1 foo 1
Bar Baz

{method) foo 1 method1 baz 1

method2 bar 2 (method?2) foo 2

{toString) foo toString haz

Mumble

(methodt) haz 1
(toString) haz

3 39

-

Copyright 2008 by Pearson Education

e

g

Finding output with tables

method Foo Bar Baz Mumble
methodl oA Fool ezl bazid
method? 65 v Bar 2 002 mumble 2

PoShrine e foo baz baz

= 40
Copyright 2008 by Pearson Education

B

_____——=======""""'—'_____ﬂ_‘ﬂ’#ﬁfﬂylk777777 :
Polymorphism answer

Foo[] pity = {new Baz (), new Bar (), new Mumble (), new Fool() };
ForvErntvinvy=aenivanmrtyrileangi iy
System.out.println(pityl[1])
e MR e M
Pty i method 29087
System.out.println ()

)
e Qutput:

baz
ek
o2

ST
foo 1
ariv?

baz
SV R
mumble 2

foo
foo 1
foo 2

— g~ 41
~ Copyright 2008 by Pearson Education

Another problem

* The order of the classes is jumbled up.
* The methods sometimes call other methods (tricky!).

public class Lamb extends Ham {
pu b vvesnd iy
SRR sV oYy M e Mo e SR B bl o R o s

}
}

public class Ham {
public void a () {
System.out.print ("Ham a AV
b();
}

public void b () {
SyspemvonprrtE e Hameh A

}

pub S rineg oS Er g v
o B B A ARy e A A
}

Copyright 2008 by Pearson Education

42

Another problem 2

public class Spam extends Yam ({
public void b() {
System.out.print ("Spam b e
}

}

public class Yam extends Lamb {
ikt ol A MRl e M MY B!
S S S ST R A e ey W
super.a() ;

}

pub ey shrandgwboSEringiyvid
R B B o WA AT B | A
}

}
» What would be the output of the following client code?

Ham[] food = {new Lamb (), new Ham(), new Spam(), new Yam() };
)0 M AEAE0 0 R 8 s R O O MLV S 4 0 10 10 B 1Y 0 RV © (1l @ i s s o A

B R e S R RN IR IS e et B P 1 VRS

food[i].a() ;

System.out.println () ; // to end the line of output
food[i] .b() ;
System.out.println () ; // to end the line of output

Systemyentyprintinyiyy

}
43

~ Copyright 2008 by Pearson Education

Class diagram

Ham

a(
b0
toString()

Lamb

al
b0
toString()

Yam

al
b0
toString()

Spam

a(
b0

. o
- oString()
.! Rl e — 44
W g_gpyright 2008 by Pearson Education

B

Polymorphism at work

e Lamb inherits Ham's a. a calls b. But Lamb overrides b...

P revveilaasiv i amand
joibc N e e h ke st g Kk
System.out.print ("Ham a A

b()’
}

publiievralaivinabyi
System.out.print ("Ham b A9
}

195151 o7 07u & w70 S i i V@ M W @ S i L0 Y G0 A
return "Ham";
}

}

public class Lamb extends Ham ({
public void b () {
System.out.print("Lamb b 8 o
}

}

e Lamb's output from a:
Ham a Lamb b

— 45
: Copyright 2008 by Pearson Education

| The table

method Ham Lamb Yam Spam
a Ham a Ham a Yam a Yam a
b() b() Ham a Hona
b() b()
b Ham b Lamb b Lamb b Spam b
toString | Ham Ham Yam Yam

Copyright 2008 by Pearson Education

46

The answer

Ham[] food = {new Lamb (), new Ham{(),

Forvfrntimy=nievmvaiifood vl engthy
System.out.println (food[1i])
Foocvmaiiv
food[i].b();
System.out.println ()

}

e Qutput:
Ham
Ham a Lamb b
Lamb b

Ham
Ham a Ham b
Ham Db

Yam

Yam a Ham a Spanrvk
Spam b

Yam
Yam a Ham a Lamb b
Lamb b

~ " Copyright 2008 by Pearson Education

B i)

new Spam(),

{

new Yam{() };

47

B

____-——======""'""’*——’ﬂ'ﬂﬂ'ﬂﬂ’#"ﬁl,k - :
Casting references

e A variable can only call that type's methods, not a subtype's.

Employee ed = new Lawyer();
int hours = ed.getHours(); // ok; this is in Employee
ed.sue () ; // compiler error

 The compiler's reasoning is, variable ed could store any kind of
employee, and not all kinds know how to sue .

e To use Lawyer methods on ed, we can type-cast it.

Lawyer theRealBEd = (Lawyer) ed;
theRealEd.sue () ; // ok

((Lawyer) ed) .sue(); // shorter version

e 48
: Copyright 2008 by Pearson Education

More about casting

* The code crashes if you cast an object too far down the tree.

Employee eric = new Secretary();
MESecretaryivre el vhake e habo i // ok
((LegalSecretary) eric) .filelegalBriefs(); // exception

// (Secretary object doesn't know how to file briefs)

* You can cast only up and down the tree, not sideways.

Lawyer linda = new Lawyer();
((Secretary) 1linda) .takeDictation("hi"); // error

» Casting doesn't actually change the object's behavior.
It just gets the code to compile/run.

((Employee) 1linda) .getVacationForm() // pink (Lawyer's)

e 49
: Copyright 2008 by Pearson Education

