
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 6

Lecture 14: File Input with Scanner

reading: 6.1 – 6.2, 5.4

(Slides adapted from Stuart Reges, Hélène Martin, and
Marty Stepp)

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

Input/output (I/O)
 import java.io.*;

 Create a File object to get info about a file on your drive.

 (This doesn't actually create a new file on the hard disk.)

 File f = new File("example.txt");

 if (f.exists() && f.length() > 9000) {

 f.delete();

 }

Method name Description

canRead() returns whether file is able to be read

delete() removes file from disk

exists() whether this file exists on disk

getName() returns file's name

length() returns number of bytes in file

renameTo(file) changes name of file

Copyright 2010 by Pearson Education
4

Reading files
 To read a file, pass a File when constructing a Scanner.

 Scanner name = new Scanner(new File("file name"));

 Example:

 File file = new File("mydata.txt");

 Scanner input = new Scanner(file);

 or (shorter):

 Scanner input = new Scanner(new File("mydata.txt"));

Copyright 2010 by Pearson Education
5

Compiler error w/ files
import java.io.*; // for File

import java.util.*; // for Scanner

public class ReadFile {

 public static void main(String[] args) {

 Scanner input = new Scanner(new File("data.txt"));

 String text = input.next();

 System.out.println(text);

 }

}

 The program fails to compile with the following error:

ReadFile.java:6: unreported exception java.io.FileNotFoundException;

must be caught or declared to be thrown

 Scanner input = new Scanner(new File("data.txt"));

 ^

Copyright 2010 by Pearson Education
6

Exceptions
 exception: An object representing a runtime error.

 dividing an integer by 0

 calling substring on a String and passing too large an index

 trying to read the wrong type of value from a Scanner

 trying to read a file that does not exist

 We say that a program with an error "throws" an exception.

 It is also possible to "catch" (handle or fix) an exception.

 checked exception: An error that must be handled by our

program (otherwise it will not compile).

 We must specify how our program will handle file I/O failures.

Copyright 2010 by Pearson Education
7

The throws clause

 throws clause: Keywords on a method's header that state

that it may generate an exception (and will not handle it).

 Syntax:

 public static type name(params) throws type {

 Example:

 public class ReadFile {

 public static void main(String[] args)

 throws FileNotFoundException {

 Like saying, "I hereby announce that this method might throw

an exception, and I accept the consequences if this happens."

Copyright 2010 by Pearson Education
8

File paths
 absolute path: specifies a drive or a top "/" folder

 C:/Documents/smith/hw6/input/data.csv

 Windows can also use backslashes to separate folders.

 relative path: does not specify any top-level folder
 names.dat
 input/kinglear.txt

 Assumed to be relative to the current directory:

 Scanner input = new Scanner(new File("data/readme.txt"));

 If our program is in H:/hw6 ,
Scanner will look for H:/hw6/data/readme.txt

Copyright 2010 by Pearson Education
9

Input tokens
 token: A unit of user input, separated by whitespace.

 A Scanner splits a file's contents into tokens.

 If an input file contains the following:

 23 3.14

 "John Smith"

The Scanner can interpret the tokens as the following types:

 Token Type(s)
 23 int, double, String
 3.14 double, String
 "John String

 Smith" String

Copyright 2010 by Pearson Education
10

Files and input cursor
 Consider a file weather.txt that contains this text:

16.2 23.5

 19.1 7.4 22.8

18.5 -1.8 14.9

 A Scanner views all input as a stream of characters:

16.2 23.5\n 19.1 7.4 22.8\n\n18.5 -1.8 14.9\n

^

 input cursor: The current position of the Scanner.

Copyright 2010 by Pearson Education
11

Consuming tokens
 consuming input: Reading input and advancing the cursor.

 Calling nextInt etc. moves the cursor past the current token.

 16.2 23.5\n 19.1 7.4 22.8\n\n18.5 -1.8 14.9\n

 ^

 double d = input.nextDouble(); // 16.2

 16.2 23.5\n 19.1 7.4 22.8\n\n18.5 -1.8 14.9\n

 ^

 String s = input.next(); // "23.5"

 16.2 23.5\n 19.1 7.4 22.8\n\n18.5 -1.8 14.9\n

 ^

Copyright 2010 by Pearson Education
12

File input question
 Recall the input file weather.txt:

16.2 23.5

 19.1 7.4 22.8

18.5 -1.8 14.9

 Write a program that prints the change in temperature
between each pair of neighboring days.

16.2 to 23.5, change = 7.3

23.5 to 19.1, change = -4.4

19.1 to 7.4, change = -11.7

7.4 to 22.8, change = 15.4

22.8 to 18.5, change = -4.3

18.5 to -1.8, change = -20.3

-1.8 to 14.9, change = 16.7

Copyright 2010 by Pearson Education
13

File input answer
// Displays changes in temperature from data in an input file.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Temperatures {

 public static void main(String[] args)

 throws FileNotFoundException {

 Scanner input = new Scanner(new File("weather.txt"));

 double prev = input.nextDouble(); // fencepost

 for (int i = 1; i <= 7; i++) {

 double next = input.nextDouble();

 System.out.println(prev + " to " + next +

 ", change = " + (next - prev));

 prev = next;

 }

 }

}

Copyright 2010 by Pearson Education
14

Reading an entire file
 Suppose we want our program to work no matter how

many numbers are in the file.

 Currently, if the file has more numbers, they will not be read.

 If the file has fewer numbers, what will happen?

A crash! Example output from a file with just 3 numbers:

16.2 to 23.5, change = 7.3

23.5 to 19.1, change = -4.4

Exception in thread "main" java.util.NoSuchElementException

 at java.util.Scanner.throwFor(Scanner.java:838)

 at java.util.Scanner.next(Scanner.java:1347)

 at Temperatures.main(Temperatures.java:12)

Copyright 2010 by Pearson Education
15

Scanner exceptions
 NoSuchElementException

 You read past the end of the input.

 InputMismatchException

 You read the wrong type of token (e.g. read "hi" as an int).

 Finding and fixing these exceptions:

 Read the exception text for line numbers in your code
(the first line that mentions your file; often near the bottom):

 Exception in thread "main" java.util.NoSuchElementException

 at java.util.Scanner.throwFor(Scanner.java:838)

 at java.util.Scanner.next(Scanner.java:1347)

 at MyProgram.myMethodName(MyProgram.java:19)

 at MyProgram.main(MyProgram.java:6)

Copyright 2010 by Pearson Education
16

Scanner tests for valid input

 These methods of the Scanner do not consume input;

they just give information about what the next token will be.

 Useful to see what input is coming, and to avoid crashes.

 These methods can be used with a console Scanner, as well.

 When called on the console, they sometimes pause waiting for input.

Method Description

hasNext() returns true if there is a next token

hasNextInt() returns true if there is a next token
and it can be read as an int

hasNextDouble() returns true if there is a next token
and it can be read as a double

Copyright 2010 by Pearson Education
17

Using hasNext methods
 Avoiding type mismatches:

 Scanner console = new Scanner(System.in);

 System.out.print("How old are you? ");

 if (console.hasNextInt()) {

 int age = console.nextInt(); // will not crash!

 System.out.println("Wow, " + age + " is old!");

 } else {

 System.out.println("You didn't type an integer.");

 }

 Avoiding reading past the end of a file:

 Scanner input = new Scanner(new File("example.txt"));

 if (input.hasNext()) {

 String token = input.next(); // will not crash!

 System.out.println("next token is " + token);

 }

Copyright 2010 by Pearson Education
18

File input question 2
 Modify the temperature program to process the entire file,

regardless of how many numbers it contains.

 Example: If a ninth day's data is added, output might be:

 16.2 to 23.5, change = 7.3

 23.5 to 19.1, change = -4.4

 19.1 to 7.4, change = -11.7

 7.4 to 22.8, change = 15.4

 22.8 to 18.5, change = -4.3

 18.5 to -1.8, change = -20.3

 -1.8 to 14.9, change = 16.7

 14.9 to 16.1, change = 1.2

Copyright 2010 by Pearson Education
19

File input answer 2
// Displays changes in temperature from data in an input file.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Temperatures {

 public static void main(String[] args)

 throws FileNotFoundException {

 Scanner input = new Scanner(new File("weather.txt"));

 double prev = input.nextDouble(); // fencepost

 while (input.hasNextDouble()) {

 double next = input.nextDouble();

 System.out.println(prev + " to " + next +

 ", change = " + (next - prev));

 prev = next;

 }

 }

}

Copyright 2010 by Pearson Education
20

File input question 3
 Modify the temperature program to handle files that

contain non-numeric tokens (by skipping them).

 For example, it should produce the same output as before
when given this input file, weather2.txt:

16.2 23.5

Tuesday 19.1 Wed 7.4 THURS. TEMP: 22.8

18.5 -1.8 <-- What happened there?!

 14.9 :-)

 You may assume that the file begins with a real number.

Copyright 2010 by Pearson Education
21

File input answer 3
// Displays changes in temperature from data in an input file.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Temperatures2 {

 public static void main(String[] args)

 throws FileNotFoundException {

 Scanner input = new Scanner(new File("weather.txt"));

 double prev = input.nextDouble(); // fencepost

 while (input.hasNext()) {

 if (input.hasNextDouble()) {

 double next = input.nextDouble();

 System.out.println(prev + " to " + next +

 ", change = " + (next - prev));

 prev = next;

 } else {

 input.next(); // throw away unwanted token

 }

 }

 }

}

Copyright 2010 by Pearson Education
22

Gas prices question
 Write a program that reads a file gasprices.txt

 Format: Belgium $/gal US $/gal date

8.20 3.81 3/21/11

8.08 3.84 3/28/11

8.38 3.92 4/4/11

8.62 4.03 4/11/11

 The program should print the average gas price over all
data in the file for both countries:

Belgium average: $8.32/gal

USA average: $3.90/gal

Copyright 2010 by Pearson Education
23

Gas prices solution
public class GasPrices {

 public static void main(String[] args)

 throws FileNotFoundException {

 Scanner s = new Scanner(new File("gasprices.txt"));

 double belgium = 0;

 double usa = 0;

 int count = 0;

 while (s.hasNext()) {

 belgium += s.nextDouble();

 usa += s.nextDouble();

 count++;

 s.next(); // skip date

 }

 System.out.printf("Belgium average: $%.2f/gal\n", belgium /

count);

 System.out.printf("USA average: $%.2f/gal\n", usa / count);

 }

}

Copyright 2010 by Pearson Education
24

Hours question
 Given a file hours.txt with the following contents:

 123 Riley 12.5 8.1 7.6 3.2

 456 Molly 4.0 11.6 6.5 2.7 12

 789 Andrew 8.0 8.0 8.0 8.0 7.5

 Consider the task of computing hours worked by each person:

 Riley (ID#123) worked 31.4 hours (7.85 hours/day)

 Molly (ID#456) worked 36.8 hours (7.36 hours/day)

 Andrew (ID#789) worked 39.5 hours (7.90 hours/day)

Copyright 2010 by Pearson Education
25

Hours answer (flawed)
// This solution does not work!

import java.io.*; // for File

import java.util.*; // for Scanner

public class HoursWorked {

 public static void main(String[] args)

 throws FileNotFoundException {

 Scanner input = new Scanner(new File("hours.txt"));

 while (input.hasNext()) {

 // process one person

 int id = input.nextInt();

 String name = input.next();

 double totalHours = 0.0;

 int days = 0;

 while (input.hasNextDouble()) {

 totalHours += input.nextDouble();

 days++;

 }

 System.out.printf(

 "%s (ID#%d) worked %.1f hours (%.2f hours/day)\n",
 name, id, totalHours, totalHours / days);

 }

 }

}

Copyright 2010 by Pearson Education
26

Flawed output
Ben (ID#123) worked 487.4 hours (97.48 hours/day)

Exception in thread "main"

java.util.InputMismatchException

 at java.util.Scanner.throwFor(Scanner.java:840)

 at java.util.Scanner.next(Scanner.java:1461)

 at java.util.Scanner.nextInt(Scanner.java:2091)

 at HoursWorked.main(HoursBad.java:9)

 The inner while loop is grabbing the next person's ID.

 We want to process the tokens, but we also care about the line
breaks (they mark the end of a person's data).

 A better solution is a hybrid approach:

 First, break the overall input into lines.

 Then break each line into tokens.

Copyright 2010 by Pearson Education
27

Line-based Scanner methods

Scanner input = new Scanner(new File("<filename>"));

while (input.hasNextLine()) {

 String line = input.nextLine();

 <process this line>;

}

Method Description

nextLine() returns next entire line of input (from cursor to \n)

hasNextLine() returns true if there are any more lines of input

to read (always true for console input)

Copyright 2010 by Pearson Education
28

Consuming lines of input
 23 3.14 John Smith "Hello" world

 45.2 19

 The Scanner reads the lines as follows:

 23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

 ^

 String line = input.nextLine();

 23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

 ^

 String line2 = input.nextLine();

 23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

 ^

 Each \n character is consumed but not returned.

Copyright 2010 by Pearson Education
29

Scanners on Strings

 A Scanner can tokenize the contents of a String:

 Scanner <name> = new Scanner(<String>);

 Example:

 String text = "15 3.2 hello 9 27.5";

 Scanner scan = new Scanner(text);

 int num = scan.nextInt();

 System.out.println(num); // 15

 double num2 = scan.nextDouble();

 System.out.println(num2); // 3.2

 String word = scan.next();

 System.out.println(word); // "hello"

Copyright 2010 by Pearson Education
30

Mixing lines and tokens

 // Counts the words on each line of a file

 Scanner input = new Scanner(new File("input.txt"));

 while (input.hasNextLine()) {

 String line = input.nextLine();

 Scanner lineScan = new Scanner(line);

 // process the contents of this line

 int count = 0;

 while (lineScan.hasNext()) {

 String word = lineScan.next();

 count++;

 }

 System.out.println("Line has " + count + " words");

 }

Input file input.txt: Output to console:

The quick brown fox jumps over

the lazy dog.

Line has 6 words

Line has 3 words

Copyright 2010 by Pearson Education
31

Hours question
 Fix the Hours program to read the input file properly:

 123 Riley 12.5 8.1 7.6 3.2

 456 Molly 4.0 11.6 6.5 2.7 12

 789 Andrew 8.0 8.0 8.0 8.0 7.5

 Recall, it should produce the following output:

 Riley (ID#123) worked 31.4 hours (7.85 hours/day)

 Molly (ID#456) worked 36.8 hours (7.36 hours/day)

 Andrew (ID#789) worked 39.5 hours (7.90 hours/day)

Copyright 2010 by Pearson Education
32

Hours answer, corrected
// Processes an employee input file and outputs each employee's hours.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Hours {

 public static void main(String[] args) throws FileNotFoundException {

 Scanner input = new Scanner(new File("hours.txt"));

 while (input.hasNextLine()) {

 String line = input.nextLine();

 processEmployee(line);

 }

 }

 public static void processEmployee(String line) {

 Scanner lineScan = new Scanner(line);

 int id = lineScan.nextInt(); // e.g. 456

 String name = lineScan.next(); // e.g. "Greg"

 double sum = 0.0;

 int count = 0;

 while (lineScan.hasNextDouble()) {

 sum = sum + lineScan.nextDouble();

 count++;

 }

 double average = sum / count;

 System.out.printf("%s (ID#%d) worked %.1f hours (%.2f hours/day)\n",
 name, id, sum, sum / count); }

}

