Building Java Programs

Chapter 5
Lecture 5-2: Random Numbers

reading: 5.1, 5.6

L —

TOUR OF ACCOUNTING |§ | ARE
3 NINE NINE :| vou
OVER HERE : NINE NINE z| SURE
WE HAVE OUR 3 NINE NINE | THAT'S
RANDOM NUMBER |3 2| RANDOM?
GENERATOR. <
£ 3 L
A g 3
B 5
L ¥

int get RandomNumber()

return Y. // chosen by fair dice roll.
/I quaranteed to be random.

http://xkcd.com/221/

THAT'S THE
PROBLEM
WITH RAN-
DOMNESS-
YOU CAN
NEVER BE

—

Randomness

Lack of predictability: don't know what's coming next

Random process: outcomes do not follow a deterministic
pattern (math, statistics, probability)

Lack of bias or correlation (statistics)

Relevant in lots of fields

» Genetic mutations (biology)
 Quantum processes (physics)
Random walk hypothesis (finance)
Cryptography (computer science)
Game theory (mathematics)
Determinism (religion)

e

Pseudo-Randomness

e Computers generate numbers in a predictable way using a
mathematical formula

 Parameters may include current time, mouse position
» In practice, hard to predict or replicate

* True randomness uses natural processes
» Atmospheric noise ()
» Lava lamps (patent #5732138)
» Radioactive decay

—

The Random class

* A Random object generates pseudo-random numbers.
e Class Random is found in the java.util package.

et R R Y e

Method name Description
nextInt () returns a random integer
nextInt (Max) returns a random integer in the range [0, max)
in other words, 0 to max-1 inclusive
nextDouble () returns a random real number in the range [0.0, 1.0)
 Example:

Random rand = new Random{() ;
int randomNumber = rand.nextInt (10); // 0-9

s

Generating random numbers

e Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1; // 1-20 inclusive

* To get a number in arbitrary range [min, max] inclusive:

name .nextInt (size of range) + min

- Where size of range is (max - min + 1)

« Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;

Random gquestions

e Given the following declaration, how would you get:

Random rand = new Random{() ;
e A random number between 1 and 47 inclusive?

BV randomly v randinext T b 04 kil

e A random number between 23 and 30 inclusive?
N A N e et e R A R e e M S

e A random even number between 4 and 12 inclusive?
IRy randeom3d = rand inexeTnbE (5 A g

e

e —

g

Random and other types

* nextDouble method returns a double between 0.0 - 1.0

« Example: Get a random GPA value between 1.5 and 4.0:
double randomGpa = rand.nextDouble() * 2.5 + 1.5;

* Any set of possible values can be mapped to integers
e code to randomly play Rock-Paper-Scissors:

170 G R PR S A W Al Y AN S MR BV

aE e
System.out.println ("Rock") ;

} else 1if (r == 1) {
Syvsbemsout vprrnb Fn Y Rape)y

} else { [/ x ==
System.out.println("Scissors") ;

}

Random gquestion

* Write a program that simulates rolling two 6-sided dice
until their combined result comes up as 7.

—

Do =
s
5 + 6 = 11
B D
4 + 3 =7

You won after 5 tries!

Random answer

// Rolls two dice until a sum of 7 is reached.
TMPOTE e AR

pubrEev e Ss e
O S T T e A e M ARV oy s
Random rand = new Random() ;
int tries = 0;

B AREA e O

while (sum != 7) {
// roll the dice once
int rolll = rand.nextInt(6) + 1;
int roll2 = rand.nextInt(6) + 1;
YDAV iet O MV AR O Y A

System.out.println(rolll + " + " + roll2 + " =" + sum);
tries++;

}

System.out.println ("You won after " + tries + " tries!");

10

Random gquestion

 Write a program that plays an adding game.
» Ask user to solve random adding problems with 2-5 numbers.
» The user gets 1 point for a correct answer, 0 for incorrect.
» The program stops after 3 incorrect answers.

R A N e e AR
i By

G B g =28
Wrong! The answer was 30
O e |

Wrong! The answer was 14
4 9 9 = 22

2 1 e oA

4

+ + +

2 R 1)
Wrong! The answer was 32
You earned 4 total points

i

 —
Random answer

// Asks the user to do adding problems and scores them.
AN O) BN s ARG B e A A AR

e NN AW SR S A N R oy N AN R Lo
public static void main(String[] args) {
Scanner console = new Scanner (System.in);
Random rand = new Random() ;

// play until user gets 3 wrong
356 N e ST S A VA (142
int wrong = 0;
while (wrong < 3) {
int result = play(console, rand); // play one game
if (result == 0) {
wrong++;
} else {
PorRt ek
}
}

SRS =N bt bk ettt o hun B ot wll Mo W ot oy b 1= Wina =t 0 A A) o Yo il ok wre ws e o s t My o Yo e ko WABL A Y.

531!

 —
Random answer 2

// Builds one addition problem and presents it to the user.
// Returns 1 point if you get it right, 0 if wrong.
public static int play(Scanner console, Random rand) {

// print the operands being added, and sum them

int operands = rand.nextInt(4) + 2;

int sum = rand.nextInt (10) + 1;

System.out.print (sum) ;

S MO A O PR ALY A A A & MR) 6 S o Y AT 0 R A i o R |
TR B AN A A=A 52 U A Y o VR A A L A A A A Sy A
sum - += n;
VR A B IR RAAGAN BV N A By I N R R G

}
System.out.print (" = ");

// read user's guess and report whether it was correct

int guess = console.nextInt();
if (guess == sum) {
bi6{ = 2 b 2164 6 N o
} else {
System.out.println ("Wrong! The answer was " + total);

return 0;

Building Java Programs

Chapter 5
Lecture 5-4: Assertions

reading: 5.5

14

// HUMANS HWAVENT PROGRAMMED ANY THING IN DECADES.

ALL THE LANGUAGES AND \DEAS AND ThRGON ARE
JUST TOYS IN THE ROBOTS' GANDBOX. THE REAL

WEIRD... THIS SURROVTINE

WORKS NOW, BUT T QWEAR
T OODNT CHUANGE A
THING.

NOWADAYS, WERE TUST PART OF THE TUNK CODE.
DON'T BELEVE ME? GO AUEMD- COMPPRE PROGRAMMER
SPEAK TO GC\RBER\SH- (‘.-aeue\zM\Nce QPAMBQTS.
CAN Yo/ TevL THe O\EEERENCE?

T VS PYLIBMC TO
TALK TO MEMCACHED
FROM DIMNGO.

AEET7 RUBY,
MAN 7/ RUBY/

Punchline to a longer comic:

55

e —

Logical assertions

o assertion: A statement that is either true or false.

Examples:

Java was created in 1995.

The sky is purple.

23 is a prime number.

10 is greater than 20.

x divided by 2 equals 7. (depends on the value of x)

* An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

16

B

Reasoning about assertions

e Suppose you have the following code:

SR R
// Point A
X==;

} else {

// Point B
D e
// Point C

}
// Point D

e What do you know about x's value at the three points?
e Is x > 3?7 Always? Sometimes? Never?

%

Assertions in code

» We can make assertions about our code and ask whether they
are true at various points in the code.

» Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print ("Type a nonnegative number: ");
doublbernumbery = oconsoleinextbouble ()
// Point A: is number < 0.0 here? (SOMETIMES)

while (number < 0.0) {

}

// Point B: is number < 0.0 here? (ALWAYS)
Sy sEemyoutprEnt v Negab ive Eryvaga B s)iy

number = console.nextDouble () ;
// Point C: is number < 0.0 here? (SOMETIMES)

// Point D: is number < 0.0 here? (NEVER)

18

B

/// 7 = -
Reasoning about assertions

e Right after a variable is initialized, its value is known:
A% g G S M
// is x > 0? ALWAYS

e In general you know nothing about parameters' values:

eyl o e b s Wi Ml iie Mol b iy WY M B Mervs Ry i AN i o W)
// is a == 10? SOMETIMES

e But inside an if, while, etc., you may know something:
pubirerstabre voidimysberviterntdy anb Dl
W Ea e
// is a == 10? NEVER

53

B

Assertions and loops

* At the start of a loop's body, the loop's test must be true:
while (y < 10) {
// is y < 10? ALWAYS

}

o After a loop, the loop's test must be false:
while (y < 10) {

}
// is y < 10? NEVER

* Inside a loop's body, the loop's test may become false:
whiile v e 10y
Vataty
// is y < 10? SOMETIMES

20

"Sometimes"”

* Things that cause a variable's value to be unknown
(often leads to "sometimes" answers):

» reading from a Scanner
» reading a number from a Random object
* a parameter's initial value to a method

e If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

« If you're unsure, "Sometimes" is a good guess.

2k

——

Assertion example 1

pub e s ba b o rdvmy s ey fin s it
ToE =
// Point A
while (x >= y) { : . :
// Point B Which of the following assertions are
X = X - y; true at which point(s) in the code?
A e Choose ALWAYS, NEVER, or SOMETIMES.
B e
// Point C x <y X ==y Zomm)
DDy Point A | SOMETIMES | SOMETIMES | ALWAYS
}
Point B | NEVER SOMETIMES | SOMETIMES
// Point D Point C | SOMETIMES | NEVER NEVER
} Point D | SOMETIMES | SOMETIMES | NEVER
// Point E Point E | ALWAYS NEVER SOMETIMES
System.out.println(z) ;

2

-

public static int mystery(Scanner console)

e

——

int prev = 0;
R 6 AR GA O A B0 R WA S
R A A e A L AR Vet D AV WAL 2 SN By Ao
// Point A
while (next != 0) {
// Point B
1f (next == prev) {
// Point C
RS N AN ANARS s A
}
SR G SRYAR Al =h G TY
next = console.nextInt ()
// Point D
}
// Point E

A = 84 U 4 A 4 AR s A B 6 A A

{

“Assertion example 2

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

next == 0| prev == 0 | next == prev
Point A | SOMETIMES | ALWAYS SOMETIMES
Point B | NEVER SOMETIMES | SOMETIMES
Point C | NEVER NEVER ALWAYS
Point D | SOMETIMES | NEVER SOMETIMES
Point E | ALWAYS SOMETIMES | SOMETIMES

23

// m
Assertion example 3

// Assumes y >= 0, and returns x"y
|20 R Y o U YoV A Y AR 6 A G 0140 D B o Rl s s Vi e
int prod = 1;

// Point A Which of the following assertions are
while (y > 0) { true at which point(s) in the code?
. 2t Choose ALWAYS NEVER or SOMETIMES
// Point C
Rty y >0 y % 2 == 0
Voo ey Point A | SOMETIMES | SOMETIMES
// Point D
} else { Point B | ALWAYS SOMETIMES
// Point E
Prodii=nProdiiiivaG Point C | ALWAYS ALWAYS
;;_.;?oint F Point D | ALWAYS SOMETIMES
) } Point E | ALWAYS NEVER
// Point G :
return prod; Point F | SOMETIMES | ALWAYS
} Point G | NEVER ALWAYS

24

