
Copyright 2010 by Pearson Education

CSE 142, Summer 2013

Chapter 1
Lecture 1-2: Static Methods

Expressions

reading: 1.4 – 2.1

Copyright 2010 by Pearson Education
2

Recall: structure, syntax
public class name {
 public static void main(String[] args) {
 statement;
 statement;
 ...
 statement;
 }
}

�  Every executable Java program consists of a class,
�  that contains a method named main,

�  that contains the statements (commands) to be executed.

class: a program

statement: a command to be executed

method: a named group
of statements

Copyright 2010 by Pearson Education
3

Comments
�  comment: A note written in source code by the

programmer to describe or clarify the code.
�  Comments are not executed when your program runs.

�  Syntax:
 // comment text, on one line

 or,
/* comment text; may span multiple lines */

�  Examples:
// This is a one-line comment.

/* This is a very long
 multi-line comment. */

Copyright 2010 by Pearson Education
4

Comments example
/* Suzy Student, CSE 142, Fall 2019
 Displays lyrics*/

public class Lyrics {
 public static void main(String[] args) {
 // first line
 System.out.println("When I first got into magic");
 System.out.println("it was an underground phenomenon");
 System.out.println();

 // second line
 System.out.println("Now everybody's like");
 System.out.println("pick a card, any card");
 }
}

Copyright 2010 by Pearson Education

Static methods

reading: 1.4

Copyright 2010 by Pearson Education
6

Algorithms
�  algorithm: A list of steps for solving a problem.

�  Example algorithm: "Bake sugar cookies"
�  Mix the dry ingredients.
�  Cream the butter and sugar.
�  Beat in the eggs.
�  Stir in the dry ingredients.
�  Set the oven temperature.
�  Set the timer for 10 minutes.
�  Place the cookies into the oven.
�  Allow the cookies to bake.
�  Spread frosting and sprinkles onto the cookies.
�  ...

Copyright 2010 by Pearson Education
7

Problems with algorithms
�  lack of structure: Many steps; tough to follow.

�  redundancy: Consider making a double batch...
�  Mix the dry ingredients.
�  Cream the butter and sugar.
�  Beat in the eggs.
�  Stir in the dry ingredients.
�  Set the oven temperature.
�  Set the timer for 10 minutes.
�  Place the first batch of cookies into the oven.
�  Allow the cookies to bake.
�  Set the timer for 10 minutes.
�  Place the second batch of cookies into the oven.
�  Allow the cookies to bake.
�  Mix ingredients for frosting.
�  ...

Copyright 2010 by Pearson Education
8

Structured algorithms
�  structured algorithm: Split into coherent tasks.

1 Make the batter.
�  Mix the dry ingredients.
�  Cream the butter and sugar.
�  Beat in the eggs.
�  Stir in the dry ingredients.

2 Bake the cookies.
�  Set the oven temperature.
�  Set the timer for 10 minutes.
�  Place the cookies into the oven.
�  Allow the cookies to bake.

3 Decorate the cookies.
�  Mix the ingredients for the frosting.
�  Spread frosting and sprinkles onto the cookies.

...

Copyright 2010 by Pearson Education
9

Removing redundancy
�  A well-structured algorithm can describe repeated tasks

with less redundancy.

1 Make the cookie batter.
�  Mix the dry ingredients.
�  ...

2a Bake the cookies (first batch).
�  Set the oven temperature.
�  Set the timer for 10 minutes.
�  ...

2b Bake the cookies (second batch).
�  Repeat Step 2a

3 Decorate the cookies.
�  ...

Copyright 2010 by Pearson Education
10

Static methods
�  static method: A named group of statements.

�  denotes the structure of a program
�  eliminates redundancy by code reuse

�  procedural decomposition:
dividing a problem into methods

�  Writing a static method is like
adding a new command to Java.

class
method A

n  statement
n  statement
n  statement

method B
n  statement
n  statement

method C
n  statement
n  statement
n  statement

Copyright 2010 by Pearson Education
11

Gives your method a name so it can be executed

�  Syntax:

public static void name() {
 statement;
 statement;
 ...
 statement;
}

�  Example:

public static void printWarning() {
 System.out.println("This product causes cancer");
 System.out.println("in lab rats and humans.");
}

Declaring a method

Copyright 2010 by Pearson Education
12

Calling a method
Executes the method's code

�  Syntax:

 name();

�  You can call the same method many times if you like.

�  Example:

 printWarning();

�  Output:

 This product causes cancer
 in lab rats and humans.

Copyright 2010 by Pearson Education
13

Using static methods
1. Design (think about) the algorithm.

�  Look at the structure, and which commands are repeated.
�  Decide what are the important overall tasks.

2. Declare (write down) the methods.
�  Arrange statements into groups and give each group a name.

3. Call (run) the methods.
�  The program's main method executes the other methods to

perform the overall task.

Copyright 2010 by Pearson Education
14

Program with static method
public class FreshPrince {
 public static void main(String[] args) {
 rap(); // Calling (running) the rap method
 System.out.println();
 rap(); // Calling the rap method again
 }

 // This method prints the lyrics to my favorite song.
 public static void rap() {
 System.out.println("Now this is the story all about how");
 System.out.println("My life got flipped turned upside-down");
 }
}

Output:

Now this is the story all about how
My life got flipped turned upside-down

Now this is the story all about how
My life got flipped turned upside-down

Copyright 2010 by Pearson Education
15

Methods calling methods
public class MethodsExample {
 public static void main(String[] args) {
 message1();
 message2();
 System.out.println("Done with main.");
 }

 public static void message1() {
 System.out.println("This is message1.");
 }

 public static void message2() {
 System.out.println("This is message2.");
 message1();
 System.out.println("Done with message2.");
 }
}

�  Output:
This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

Copyright 2010 by Pearson Education
16

�  When a method is called, the program's execution...
�  "jumps" into that method, executing its statements, then
�  "jumps" back to the point where the method was called.

public class MethodsExample {

 public static void main(String[] args) {

 message1();

 message2();

 System.out.println("Done with main.");

 }

 ...

}

public static void message1() {
 System.out.println("This is message1.");
}

public static void message2() {
 System.out.println("This is message2.");
 message1();

 System.out.println("Done with message2.");
}

public static void message1() {
 System.out.println("This is message1.");
}

Control flow

Copyright 2010 by Pearson Education
17

When to use methods
�  Place statements into a static method if:

�  The statements are related structurally, and/or
�  The statements are repeated.

�  You should not create static methods for:
�  An individual println statement.
�  Only blank lines. (Put blank printlns in main.)
�  Unrelated or weakly related statements.

(Consider splitting them into two smaller methods.)

Copyright 2010 by Pearson Education

Drawing complex figures
with static methods

reading: 1.5
(Ch. 1 Case Study: DrawFigures)

Copyright 2010 by Pearson Education
19

Static methods question
�  Write a program to print these figures using methods.

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Copyright 2010 by Pearson Education
20

Development strategy

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

First version (unstructured):

n  Create an empty program and main method.

n  Copy the expected output into it, surrounding
each line with System.out.println syntax.

n  Run it to verify the output.

Copyright 2010 by Pearson Education
21

Program version 1
public class Figures1 {
 public static void main(String[] args) {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println("+--------+");
 System.out.println();
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("| STOP |");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("+--------+");
 }
}

Copyright 2010 by Pearson Education
22

Development strategy 2

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Second version (structured, with redundancy):

n  Identify the structure of the output.

n  Divide the main method into static methods
based on this structure.

Copyright 2010 by Pearson Education
23

Output structure

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

The structure of the output:
n  initial "egg" figure
n  second "teacup" figure
n  third "stop sign" figure
n  fourth "hat" figure

This structure can be represented by methods:
n  egg

n  teaCup

n  stopSign

n  hat

Copyright 2010 by Pearson Education
24

Program version 2
public class Figures2 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }

 public static void egg() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void teaCup() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println("+--------+");
 System.out.println();
 }
 ...

Copyright 2010 by Pearson Education
25

Program version 2, cont'd.
 ...

 public static void stopSign() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("| STOP |");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void hat() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("+--------+");
 }
}

Copyright 2010 by Pearson Education
26

Development strategy 3

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Third version (structured, without redundancy):

n  Identify redundancy in the output, and create
methods to eliminate as much as possible.

n  Add comments to the program.

Copyright 2010 by Pearson Education
27

Output redundancy

The redundancy in the output:

n  egg top: reused on stop sign, hat
n  egg bottom: reused on teacup, stop sign
n  divider line: used on teacup, hat

This redundancy can be fixed by methods:
n  eggTop

n  eggBottom

n  line

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Copyright 2010 by Pearson Education
28

Program version 3
// Suzy Student, CSE 138, Spring 2094
// Prints several figures, with methods for structure and redundancy.
public class Figures3 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }

 // Draws the top half of an an egg figure.
 public static void eggTop() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 }

 // Draws the bottom half of an egg figure.
 public static void eggBottom() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 }

 // Draws a complete egg figure.
 public static void egg() {
 eggTop();
 eggBottom();
 System.out.println();
 }

 ...

Copyright 2010 by Pearson Education
29

Program version 3, cont'd.
 ...

 // Draws a teacup figure.
 public static void teaCup() {
 eggBottom();
 line();
 System.out.println();
 }

 // Draws a stop sign figure.
 public static void stopSign() {
 eggTop();
 System.out.println("| STOP |");
 eggBottom();
 System.out.println();
 }

 // Draws a figure that looks sort of like a hat.
 public static void hat() {
 eggTop();
 line();
 }

 // Draws a line of dashes.
 public static void line() {
 System.out.println("+--------+");
 }
}

Copyright 2010 by Pearson Education
30

Copyright 2010 by Pearson Education
31

Data and expressions
reading: 2.1

Copyright 2010 by Pearson Education
32

Data types
�  Internally, computers store everything as 1s and 0s

 104 à 01101000
 "hi" à 0110100001101001
 h à 01101000

�  How are h and 104 differentiated?

�  type: A category or set of data values.
�  Constrains the operations that can be performed on data
�  Many languages ask the programmer to specify types
�  Examples: integer, real number, string

Copyright 2010 by Pearson Education
33

Java's primitive types
�  primitive types: 8 simple types for numbers, text, etc.

�  Java also has object types, which we'll talk about later

 Name Description Examples

�  int integers (up to 231 - 1) 42, -3, 0, 926394
�  double real numbers (up to 10308) 3.1, -0.25, 9.4e3
�  char single text characters 'a', 'X', '?', '\n'
�  boolean logical values true, false

•  Why does Java distinguish integers vs. real numbers?

Copyright 2010 by Pearson Education
34

Integer or real number?
�  Which category is more appropriate?

�  credit: Kate Deibel, http://www.cs.washington.edu/homes/deibel/CATs/

integer (int) real number (double)

1. Temperature in degrees Celsius
2. The population of lemmings
3. Your grade point average
4. A person's age in years
5. A person's weight in pounds
6. A person's height in meters

 7. Number of miles traveled
 8. Number of dry days in the past month
 9. Your locker number
10. Number of seconds left in a game
11. The sum of a group of integers
12. The average of a group of integers

Copyright 2010 by Pearson Education
35

Expressions
�  expression: A value or operation that computes a value.

•  Examples: 1 + 4 * 5
 (7 + 2) * 6 / 3

 42

�  The simplest expression is a literal value.
�  A complex expression can use operators and parentheses.

Copyright 2010 by Pearson Education
36

Arithmetic operators
�  operator: Combines multiple values or expressions.

�  + addition
�  - subtraction (or negation)
�  * multiplication
�  / division
�  % modulus (a.k.a. remainder)

�  As a program runs, its expressions are evaluated.
�  1 + 1 evaluates to 2

�  System.out.println(3 * 4); prints 12

�  How would we print the text 3 * 4 ?

Copyright 2010 by Pearson Education
37

Integer division with /
�  When we divide integers, the quotient is also an integer.

�  14 / 4 is 3, not 3.5

 3 4 52
 4) 14 10) 45 27) 1425
 12 40 135
 2 5 75
 54
 21

�  More examples:
�  32 / 5 is 6
�  84 / 10 is 8
�  156 / 100 is 1

�  Dividing by 0 causes an error when your program runs.

Copyright 2010 by Pearson Education
38

Integer remainder with %
�  The % operator computes the remainder from integer division.

�  14 % 4 is 2
�  218 % 5 is 3

 3 43
 4) 14 5) 218
 12 20
 2 18
 15
 3

�  Applications of % operator:
�  Obtain last digit of a number: 230857 % 10 is 7
�  Obtain last 4 digits: 658236489 % 10000 is 6489
�  See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

What is the result?
45 % 6
2 % 2
8 % 20
11 % 0

Copyright 2010 by Pearson Education
39

Precedence
�  precedence: Order in which operators are evaluated.

�  Generally operators evaluate left-to-right.
1 - 2 - 3 is (1 - 2) - 3 which is -4

�  But * / % have a higher level of precedence than + -

1 + 3 * 4 is 13

 6 + 8 / 2 * 3
 6 + 4 * 3
 6 + 12 is 18

�  Parentheses can force a certain order of evaluation:
(1 + 3) * 4 is 16

�  Spacing does not affect order of evaluation
1+3 * 4-2 is 11

Copyright 2010 by Pearson Education
40

Precedence examples

�  1 * 2 + 3 * 5 % 4
�  _/
 |
 2 + 3 * 5 % 4

�  _/
 |
 2 + 15 % 4

�  ___/
 |
 2 + 3

�  ________/
 |
 5

1 + 8 % 3 * 2 - 9
 _/
 |
1 + 2 * 2 - 9

 ___/
 |
1 + 4 - 9

 ______/
 |
 5 - 9

 _________/
 |
 -4

Copyright 2010 by Pearson Education
41

Precedence questions
�  What values result from the following expressions?

�  9 / 5

�  695 % 20

�  7 + 6 * 5

�  7 * 6 + 5

�  248 % 100 / 5

�  6 * 3 - 9 / 4

�  (5 - 7) * 4

�  6 + (18 % (17 - 12))

Copyright 2010 by Pearson Education
42

Real numbers (type double)
�  Examples: 6.022 , -42.0 , 2.143e17

�  Placing .0 or . after an integer makes it a double.

�  The operators + - * / % () all still work with double.

�  / produces an exact answer: 15.0 / 2.0 is 7.5

�  Precedence is the same: () before * / % before + -

Copyright 2010 by Pearson Education
43

Real number example
�  2.0 * 2.4 + 2.25 * 4.0 / 2.0
�  ___/
 |
 4.8 + 2.25 * 4.0 / 2.0

�  ___/
 |
 4.8 + 9.0 / 2.0

�  _____/
 |
 4.8 + 4.5

�  ____________/
 |
 9.3

Copyright 2010 by Pearson Education
44

Mixing types
�  When int and double are mixed, the result is a double.

�  4.2 * 3 is 12.6

�  The conversion is per-operator, affecting only its operands.
�  7 / 3 * 1.2 + 3 / 2
�  _/
 |
 2 * 1.2 + 3 / 2

�  ___/
 |
 2.4 + 3 / 2

�  _/
 |
 2.4 + 1

�  ________/
 |
 3.4

�  3 / 2 is 1 above, not 1.5.

�  2.0 + 10 / 3 * 2.5 - 6 / 4
�  ___/
 |
2.0 + 3 * 2.5 - 6 / 4

�  _____/
 |
2.0 + 7.5 - 6 / 4

�  _/
 |
2.0 + 7.5 - 1

�  _________/
 |
 9.5 - 1

�  ______________/
 |
 8.5

Copyright 2010 by Pearson Education
45

String concatenation
�  string concatenation: Using + between a string and

another value to make a longer string.

 "hello" + 42 is "hello42"
 1 + "abc" + 2 is "1abc2"
 "abc" + 1 + 2 is "abc12"
 1 + 2 + "abc" is "3abc"
 "abc" + 9 * 3 is "abc27"
 "1" + 1 is "11"
 4 - 1 + "abc" is "3abc"

�  Use + to print a string and an expression's value together.

�  System.out.println("Grade: " + (95.1 + 71.9) / 2);

•  Output: Grade: 83.5

