
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 7

Lecture 7-3: Arrays as Parameters; File Output

reading: 7.1, 4.3, 3.3

self-checks: Ch. 7 #19-23

exercises: Ch. 7 #5

Copyright 2008 by Pearson Education
2

Section attendance question
 Write a program that reads a data file of section attendance

and produces the following output:

Sections attended: [9, 6, 7, 4, 3]

Student scores: [20, 18, 20, 12, 9]

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Sections attended: [6, 7, 5, 6, 4]

Student scores: [18, 20, 15, 18, 12]

Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Sections attended: [5, 6, 5, 7, 6]

Student scores: [15, 18, 15, 20, 18]

Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

• Students earn 3 points for each section attended up to 20.

Copyright 2008 by Pearson Education
3

Section input file
 The input file contains section attendance data:

111111101011111101001110110110110001110010100

111011111010100110101110101010101110101101010

110101011011011011110110101011010111011010101

 Each line represents a section (5 students, 9 weeks).

 1 means the student attended; 0 not.

week1 week2 week3 week4 week5 week6 week7 week8 week9

11111 11010 11111 10100 11101 10110 11000 11100 10100

week2

student1 student2 student3 student4 student5

1 1 0 1 0

Copyright 2008 by Pearson Education
4

Data transformations
 In this problem we go from 0s and 1s to student grades

 This is called transforming the data.

 Often each transformation is stored in its own array.

 We must map between the data and array indexes.

Examples:

 by position (store the i th value we read at index i)

 tally (if input value is i, store it at array index i)

 explicit mapping (count 'M' at index 0, count 'O' at index 1)

Copyright 2008 by Pearson Education
5

Section attendance answer
// This program reads a file representing which students attended which
// discussion sections and produces output of their attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
while (input.hasNextLine()) {

String line = input.nextLine(); // process one section
int[] attended = new int[5];
for (int i = 0; i < line.length(); i++) {

if (line.charAt(i) == '1') { // c == '1' or c == '0'
attended[i % 5]++; // student attended section

}
}
int[] points = new int[5];
for (int i = 0; i < attended.length; i++) {

points[i] = Math.min(20, 3 * attended[i]);
}
double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
System.out.println("Sections attended: " + Arrays.toString(attended));
System.out.println("Sections scores: " + Arrays.toString(points));
System.out.println("Sections grades: " + Arrays.toString(grades));
System.out.println();

}
}

}

Copyright 2008 by Pearson Education
6

Array parameter example
public static void main(String[] args) {

int[] iq = {126, 84, 149, 167, 95};

double avg = average(iq);

System.out.println("Average = " + avg);

}

public static double average(int[] array) {

int sum = 0;

for (int i = 0; i < array.length; i++) {

sum += array[i];

}

return (double) sum / array.length;

}

Output:
Average = 124.2

Copyright 2008 by Pearson Education
7

Arrays passed by reference
 Arrays are objects.

 When passed as parameters, they are passed by reference.

(Changes made in the method are also seen by the caller.)

 Example:

public static void main(String[] args) {
int[] iq = {126, 167, 95};
doubleAll(iq);
System.out.println(Arrays.toString(iq));

}

public static void doubleAll(int[] a) {
for (int i = 0; i < a.length; i++) {

a[i] = a[i] * 2;
}

}

 Output:
[252, 334, 190]

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

Copyright 2008 by Pearson Education
8

Arrays as return (declaring)

public static type[] methodName(parameters) {

 Example:

public static int[] countDigits(int n) {

int[] counts = new int[10];

while (n > 0) {

int digit = n % 10;

n = n / 10;

counts[digit]++;

}

return counts;

}

Copyright 2008 by Pearson Education
9

Arrays as return (calling)

type[] name = methodName(parameters);

 Example:

public static void main(String[] args) {

int[] tally = countDigits(229231007);

System.out.println(Arrays.toString(tally));

}

Output:

[2, 1, 3, 1, 0, 0, 0, 1, 0, 1]

Copyright 2008 by Pearson Education
10

Array param/return question
 Modify our previous Sections program to use static

methods that use arrays as parameters and returns.

Sections attended: [9, 6, 7, 4, 3]

Student scores: [20, 18, 20, 12, 9]

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Sections attended: [6, 7, 5, 6, 4]

Student scores: [18, 20, 15, 18, 12]

Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Sections attended: [5, 6, 5, 7, 6]

Student scores: [15, 18, 15, 20, 18]

Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

Copyright 2008 by Pearson Education
11

Array param/return answer
// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
while (input.hasNextLine()) {

// process one section
String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] points, double[] grades) {

System.out.println("Sections attended: " + Arrays.toString(attended));
System.out.println("Sections scores: " + Arrays.toString(points));
System.out.println("Sections grades: " + Arrays.toString(grades));
System.out.println();

}

...

Copyright 2008 by Pearson Education
12

Array param/return answer
...

// Counts the sections attended by each student for a particular section.
public static int[] countAttended(String line) {

int[] attended = new int[5];
for (int i = 0; i < line.length(); i++) {

char c = line.charAt(i);
// c == '1' or c == '0'
if (c == '1') {

// student attended their section
attended[i % 5]++;

}
}
return attended;

}

// Computes the points earned for each student for a particular section.
public static int[] computePoints(int[] attended) {

int[] points = new int[5];
for (int i = 0; i < attended.length; i++) {

points[i] = Math.min(20, 3 * attended[i]);
}
return points;

}

// Computes the percentage for each student for a particular section.
public static double[] computeGrades(int[] points) {

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
return grades;

}
}

Copyright 2008 by Pearson Education
13

File output

reading: 6.4 - 6.5

Copyright 2008 by Pearson Education
14

Output to files
 PrintStream: An object in the java.io package that lets

you print output to a destination such as a file.

 Any methods you have used on System.out

(such as print, println) will work on a PrintStream.

 Syntax:

PrintStream name = new PrintStream(new File("file name"));

Example:
PrintStream output = new PrintStream(new File("out.txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

Copyright 2008 by Pearson Education
15

Details about PrintStream

PrintStream name = new PrintStream(new File("file name"));

 If the given file does not exist, it is created.

 If the given file already exists, it is overwritten.

 The output you print appears in a file, not on the console.

You will have to open the file with an editor to see it.

 Do not open the same file for both reading (Scanner) and

writing (PrintStream) at the same time.

 You will overwrite your input file with an empty file (0 bytes).

Copyright 2008 by Pearson Education
16

System.out and PrintStream

 The console output object, System.out, is a PrintStream.

PrintStream out1 = System.out;

PrintStream out2 = new PrintStream(new File("data.txt"));

out1.println("Hello, console!"); // goes to console

out2.println("Hello, file!"); // goes to file

 A reference to it can be stored in a PrintStream variable.

 Printing to that variable causes console output to appear.

 You can pass System.out as a parameter to a method

expecting a PrintStream.

 Allows methods that can send output to the console or a file.

Copyright 2008 by Pearson Education
17

PrintStream question

 Modify our previous Sections program to use a

PrintStream to output to the file sections_out.txt.

Section #1:

Sections attended: [9, 6, 7, 4, 3]

Student scores: [20, 18, 20, 12, 9]

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Section #2:

Sections attended: [6, 7, 5, 6, 4]

Student scores: [18, 20, 15, 18, 12]

Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Section #3:

Sections attended: [5, 6, 5, 7, 6]

Student scores: [15, 18, 15, 20, 18]

Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

Copyright 2008 by Pearson Education
18

PrintStream answer
// Section attendance program
// This version uses a PrintStream for output.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
PrintStream out = new PrintStream(new File("sections_out.txt"));
while (input.hasNextLine()) { // process one section

String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades, out);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] points,

double[] grades, PrintStream out) {
out.println("Sections attended: " + Arrays.toString(attended));
out.println("Sections scores: " + Arrays.toString(points));
out.println("Sections grades: " + Arrays.toString(grades));
out.println();

}
...

Copyright 2008 by Pearson Education
19

Prompting for a file name
 We can ask the user to tell us the file to read.

 The file name might have spaces; use nextLine(), not next()

// prompt for input file name

Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

Scanner input = new Scanner(new File(filename));

 What if the user types a file name that does not exist?

Copyright 2008 by Pearson Education
20

Fixing file-not-found issues
 File objects have an exists method we can use:

Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

File file = new File(filename);

if (!file.exists()) {
// try a second time
System.out.print("Try again: ");
String filename = console.nextLine();
file = new File(filename);

}

Scanner input = new Scanner(file); // open the file

Output:

Type a file name to use: hourz.text

Try again: hours.txt

