
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 10, 11

Lecture 22: 143 Preview

optional reading: 10.1, 11.1 - 11.3

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

Problems with arrays

 We need to know the size when we declare an array, and
we can’t change it later

 Can’t add more elements

 Can’t shrink the array to avoid wasting space

 No method to find the index of a given object in an array

 No method to add/remove from the middle of the list
without overwriting a given element

Could get around this with Arrays.copyOf

Could use Arrays.sort and Arrays.binarySearch, but this
could be inefficient

We’d have to write our own methods

Copyright 2010 by Pearson Education
4

Problems with arrays

 We need to know the size when we declare an array, and
we can’t change it later

 Can’t add more elements

 Can’t shrink the array to avoid wasting space

 No method to find the index of a given object in an array

 No method to add/remove from the middle of the list
without overwriting a given element

Could get around this with Arrays.copyOf

Could use Arrays.sort and Arrays.binarySearch, but this
could be inefficient

We’d have to write our own methods

Copyright 2010 by Pearson Education
5

ArrayLists

 Arrays that dynamically resize themselves to accommodate
adding or removing elements

Copyright 2010 by Pearson Education
6

ArrayList declaration
Arrays: type[] name = new type[length];

ArrayList: ArrayList<type> name = new ArrayList<type>();

 Example:
ArrayList<String> words = new ArrayList<String>();

 Note – the type must be an object, not a primitive type.
You can mostly just use primitive types because of
autoboxing and unboxing, but you must declare object
types such as

 Boolean, Integer, Double, Character

 Need to import java.util.*;

Copyright 2010 by Pearson Education
7

ArrayList Methods
Method name Description

add(obj) Adds obj to the end of the list

add(index, obj) Adds obj at the specified index, shifting
higher-index elements to make room

contains(obj) Whether the list contains obj

get(i) Get the object at index i

indexOf(obj) Find the lowest index of obj in the list, -1 if
not found

lastIndexOf(obj) Find the highest index of obj in the list, -1 if
not found

remove(i) Remove the element at index i

remove(obj) Remove the lowest index occurrence of obj

set(i, obj) Set the element at index i to obj

size() The number of elements in the list

Copyright 2010 by Pearson Education
8

Cities revisited
 Remember our Cities example?

City State Population Latitude Longitude

Seattle WA 616627 47621800 -122350326

 There was information about which state each city is in that
we just ignored.

 Let’s add a legend that shows which states the cities we
plotted were from

 Why would this have been difficult with standard arrays?

 Let’s pick a different color for each state, and color all cities in
that state with that color

 Let’s add that color to our legend as well

 How will we convert a state (String) to a color (3 ints)?

Copyright 2010 by Pearson Education
9

String to Color using
hashCode()

 All objects have a method called hashCode that returns a
number representing that object

 The Random object has a constructor Random(seed)

 The seed determines future random numbers

 The Color object has a constructor that takes 3 ints

(red, green, and blue)

 We can use the state’s hash code to seed a Random object

and then generate the red, green, and blue components of
a Color.

 This guarantees that for a given state, we will always generate
the same color, but different states will likely have different
colors

Copyright 2010 by Pearson Education
10

Solution details
 Our method converting String to Color
 public static Color getColor(String state) {

 Random r = new Random(state.hashCode());

 return new Color(r.nextInt(256),

 r.nextInt(256), r.nextInt(256));

}

 Assume we have an ArrayList<String> called states and
a Graphics object called g

 As we encounter each state that we’ll plot
if (!states.contains(state)) {

 states.add(state); // keep track of states that we plotted

}

g.setColor(getColor(state));

// Plot the city, it will be the correct color

Copyright 2010 by Pearson Education
11

Solution details (cont)
 Assume we have an ArrayList<String> called states, a
Graphics object called g, and int coordinates x and y

 For drawing the legend

Collections.sort(states);
for (int i = 0; i < states.size(); i++) {

 String state = states.get(i);

 g.setColor(getColor(state));

 g.drawString(state, x, y);

 // update x and y

}

Copyright 2010 by Pearson Education
12

Problems
 For large ArrayLists, contains can be inefficient

 We have to generate the Color from the state

 What if we wanted to associate an arbitrary Color with each

state?

 We could make parallel ArrayLists, that store Strings and
Colors, but we’d get thrown off when we sort the states for the

legend

 We could create a new object type with a String and a Color field,
but that’s a lot of work (Collections won’t be able to sort an
ArrayList of an arbitrary type either)

Copyright 2010 by Pearson Education
13

Problems
 For large ArrayLists, contains can be inefficient

 We have to generate the Color from the state

 What if we wanted to associate an arbitrary Color with each

state?

 We could make parallel ArrayLists, that store Strings and
Colors, but we’d get thrown off when we sort the states for the

legend

 We could create a new object type with a String and a Color field,
but that’s a lot of work (Collections won’t be able to sort an
ArrayList of an arbitrary type either)

Copyright 2010 by Pearson Education
14

HashMaps

 A data structure that associates keys and values

 The keys and values can be arbitrary types, but all the keys
must be the same type, and all the values must be the
same type. The keys must be unique!

 Think of it as an array that can be indexed on any type, not
just ints

 key "foo" "bar" "baz"

value 12 49 -2

Copyright 2010 by Pearson Education
15

HashMap declaration

HashMap<key_type, value_type> name =

 new HashMap<key_type, value_type>();

 Example:
HashMap<String, Color> colors =

 new HashMap<String, Color>();

 Note – the type must be an object, not a primitive type.
You can mostly just use primitive types because of
autoboxing and unboxing, but you must declare object
types such as

 Boolean, Integer, Double, Character

 Need to import java.util.*;

Copyright 2010 by Pearson Education
16

HashMap Methods
Method name Description

containsKey(obj) Whether obj is a key in the map

containsValue(obj) Whether obj is a value in the map

get(obj) Get the value associated with the key obj,
null if key is not found

keyset() Gets the Set of all the keys in the map

put(key, val) Adds a key/value pairing to the map

remove(obj) Remove the mapping for key obj, and return
the value that was associated with it, null if

key is not found

size() The number of entries in the map

values() Gets a Collection of all the values in the

map

Copyright 2010 by Pearson Education
17

Cities revisited
 We’ll no longer have to generate a Color from a String

 We can just associate Strings and Colors and keys as

values in the map

 Without going into detail, for large data sets, adding,
removing, and finding entries in a HashMap is faster than
adding, removing, and finding elements in an ArrayList

 ArrayList is an ordered list, while HashMap isn’t. Maintaining

that order takes time.

Copyright 2010 by Pearson Education
18

Solution details
 Assume we have a HashMap<String, Color> called colors

and a Graphics object called g

 As we encounter each state that we’ll plot
if (!colors.containsKey(state)) {

 Random r = new Random();

 colors.put(state, new Color(r.nextInt(256),

 r.nextInt(256), r.nextInt(256)));

}

g.setColor(colors.get(state));

// Plot the city, it will be the correct color

Copyright 2010 by Pearson Education
19

Solution details (cont)
 Assume we have a HashMap<String, Color> called
colors, a Graphics object called g, and int coordinates x
and y

 For drawing the legend

for (String state :

 new TreeSet<String>(colors.keySet())) {

 g.setColor(colors.get(state));

 g.drawString(state, x, y);

 // update x and y

}

 This is called a foreach loop. A TreeSet doesn’t have
indexes, so we can’t get the element at index i

