Building Java Programs

Chapter 9

Lecture 20: Interacting with the Superclass (super);
Discussion of Homework 9: Critters

reading: 9.2

(Slides adapted from Stuart Reges, Hélene Martin, and
Marty Stepp)

Copyright 2008 by Pearson Education

~ " Copyright 2008 by Pearson Education

1 STARTED A TASK g REALLY? I 3

FORCE TO ELIMINATE I™ DOING g

REDUNDANCIES IN OUR |§ THE SAME |

INTERNAL PROCESSES. E THING. E
&

;

&

e
Calling overridden methods

» Subclasses can call overridden methods with super

super . method (parameters)

 Example:

public class LegalSecretary extends Secretary {
public double getSalary () {
double baseSalary = super.getSalary():;
return baseSalary + 5000.0;

~ Copyright 2008 by Pearson Education

//

——e—

Inheritance and constructors

* Imagine that we want to give employees more vacation
days the longer they've been with the company.

» For each year worked, we'll award 2 additional vacation days.

» When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

» This will require us to modify our Employee class and add
some new state and behavior.

» Exercise: Make necessary modifications to the Employee class.

e 4
Copyright 2008 by Pearson Education

//
Modified Employee class

public class Employee {
private int years;

public Employee (int initialYears) ({
years = initialYears;

}

Pl SRR T B e S AR S S
return 40;

}

public double getSalary () {
return 50000.0;

}

SysteR et shmlo de huaVi e i bt o hauble Y Sl
return 10 + 2 * years;

}

oo SRR SR At S e e At e e
return "yellow";

~ Copyright 2008 by Pearson Education

e
Problem with constructors

* Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbolvavsveoanst rnetorshmplhoyecit)
location: class Employee

public class Lawyer extends Employee {

N

» The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

 The long explanation: (next slide)

Copyright 2008 by Pearson Education

e
The detailed explanation

e Constructors are not inherited.
» Subclasses don't inherit the Employee (int) constructor.

» Subclasses receive a default constructor that contains:

public Lawyer () {

super () ; // calls Employee () constructor

* But our Employee (int) replaces the default Employee ().

» The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

Copyright 2008 by Pearson Education

//
Calling superclass constructor

super (parameters) ;

» Example:
public class Lawyer extends Employee {
bR R P e R A e s R e e
super (years); // calls Employee constructor

}

}

» The super call must be the first statement in the constructor.

o Exercise: Make a similar modification to the Marketer class.

i . 8
. Copyright 2008 by Pearson Education

//
Modified Marketer class

// A class to represent marketers.
public class Marketer extends Employee ({
public Marketer (int years) ({
super (years) ;

}

public void advertise () {
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
return super.getSalary() + 10000.0;

}

» Exercise: Modify the Ssecretary subclass.
« Secretaries' years of employment are not tracked.
« They do not earn extra vacation for years worked.

Copyright 2008 by Pearson Education

//
Modified Secretary class

// A class to represent secretaries.
public class Secretary extends Employee {
public Secretary () ({
super (0) ;

}

public void takeDictation (String text) ({
Sy stremyonbrprinrimit Pakrngrdyotabronrotrbext et raser iy

}

» Since secretary doesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.

« Its default constructor calls the secretary () constructor.

10

~ Copyright 2008 by Pearson Education

e
Inheritance and fields

* Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {

public double getSalary() {
return super.getSalary() + 5000 * years;

}
}
* Does not work; the error is the following:

Lawyer.java:/: years has private access 1n Employee
return super.getSalary () + 5000 * years;

A

* Private fields cannot be directly accessed from subclasses.
 One reason: So that subclassing can't break encapsulation.
» How can we get around this limitation?

1:4:
Copyright 2008 by Pearson Education

//
Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee {
private int years;

public Employee (int initialYears) {
years = initialYears;

}

public int getYears() {
return years;
}

}

public class Lawyer extends Employee {
public Lawyer (int years) {
super (years) ;

}

public double getSalary () {
return super.getSalary() + 5000 * getYears():
}

1

~ Copyright 2008 by Pearson Education

//
Revisiting Secretary

* The secretary class currently has a poor solution.

» We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.
o If we call getYears on a Secretary object, we'll always get 0.

e This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

» Redesign our Employee class to allow for a better solution.

5L

Copyright 2008 by Pearson Education

e
Improved Employee code

» Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee ({
private int years;

public Employee (int initialYears) {
years = initialYears;

}

publiierint et Nacationbaysiyaad
return 10 + getSeniorityBonus() ;

}

// vacation days given for each year in the company
public int getSeniorityBonus () ({

return 2 * years;
}

}

» How does this help us improve the Secretary?

14
Copyright 2008 by Pearson Education

//
Improved Secretary code

- Secretary can selectively override getSeniorityBonus;
when getVacationDays runs, it will use the new version.

 Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {
super (years) ;

}

// Secretaries don't get a bonus for their years of service.
public int getSeniorityBonus () {
return O;

}

public void takeDictation (String text) {
SvshemsonvpranbbnmlinraringsdiGrabironvobrbeg iy a s

}

15
Copyright 2008 by Pearson Education

\q/’

_ —

Homework 8:
Critters

reading: HWS8 spec

:~i| L
0

o

e Ant

¢ Bard

e Hippo
Vulture
Ry

e behavior:
o oot
o taght
e getColor

¢ getMove

Lo

CSE 142 Critters

(creative)

eating food
animal fighting
color to display
movement
letter to display

_ Copyright 2008 by Pearson Education

w
8 .
8
L E
B 2 B
= .
L
. . E.W
8. 1 5
s 5 o
L
. w L
8
L s WW
B L 55
w B
. . ‘B
21 . 88 L
w
L . L
E] w's W
. W. ' 8
8. . L
5 L
L EW
Lt L
S o T |_eee
A
I~ Husky background colars

i

#,;%¢/¢”f;»—
A Critter subclass

public class name extends Critter { ... }

public abstract class Critter {

public boolean eat ()

public Attack fight (String opponent)
R PONeE oL AT

DublEre o er dfe i olen ()

public Direction getMove ()
// NORTH, SOUTH, EAST, WEST, CENTER

Dubh e S e s R e

18

~ Copyright 2008 by Pearson Education

L L =T —— A L
A A I P A e e e e e

How the simulator work

e "Go" - loop:
» move each animal (getMove)
« if they collide, fight
« if they find food, eat

e Simulator is in control!
* getMove IS one move at a time
« (no loops)
» Keep state (fields)
« to remember future moves

RS

- : "'7 Copyright 2008 by Pearson Education

//

——e——

Development Strategy

* Do one species at a time

» in ABC order from easier to harder (Ant - Bird > ...)
e debug printlns

e Simulator helps you debug
» smaller width/height
» fewer animals
o "Tick" instead of "Go"
 "Debug" checkbox
» drag/drop to move animals

20
i Copyright 2008 by Pearson Education

//
Critter exercise: Cougar

o Write a critter class Cougar:

Method Behavior
constructor | public Cougar ()
eat Always eats.
fight Always pounces.

getColor |Blue if the cougar has never fought; red if he has.

getMove Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

CosString e

21

Copyright 2008 by Pearson Education

//

—

Ideas for state

* You must not only have the right state, but update that
state properly when relevant actions occur.

e Counting is helpful:
» How many total moves has this animal made?
* How many times has it eaten? Fought?

* Remembering recent actions in fields is helpful:

« Which direction did the animal move last?
« How many times has it moved that way?

* Did the animal eat the last time it was asked?
» How many steps has the animal taken since last eating?
« How many fights has the animal been in since last eating?

22

Copyright 2008 by Pearson Education

N

Cougar solution

i SlonRvEEy £ b AL et e A o st Bl E W

public class Cougar extends Critter {
private boolean west;
private boolean fought;

enss A s el a i o o R atd M A
We =t re
fought = false;

}

public boolean eat () {
west = lwest;
return true;

}

publievierack v rrghttSrring ropponent)y
fought = true;
return Attack.POUNCE;

-
ikl 23
" Copyright 2008 by Pearson Education

/*/-?

Cougar solution

publkiciolor getColortyi
if (fought) {
e e e S e e e
} else {
revurn et oloys Bl
}
)

ER AT AN O A s el e Sl A e
Fobra s
return Direction.WEST;
Poradhaand
15 R U R AN DR i S AU AV T DY
}
}

puablicrstrimgrbostrinmeivgd
SR A e L,

}

=3 24
" Copyright 2008 by Pearson Education

