
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9

Lecture 20: Interacting with the Superclass (super);
Discussion of Homework 9: Critters

reading: 9.2

(Slides adapted from Stuart Reges, Hélène Martin, and
Marty Stepp)

Copyright 2008 by Pearson Education
2

Copyright 2008 by Pearson Education
3

Calling overridden methods
 Subclasses can call overridden methods with super

 super.method(parameters)

 Example:

 public class LegalSecretary extends Secretary {

 public double getSalary() {

 double baseSalary = super.getSalary();

 return baseSalary + 5000.0;

 }

 ...

 }

Copyright 2008 by Pearson Education
4

Inheritance and constructors
 Imagine that we want to give employees more vacation

days the longer they've been with the company.

 For each year worked, we'll award 2 additional vacation days.

 When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

 This will require us to modify our Employee class and add

some new state and behavior.

 Exercise: Make necessary modifications to the Employee class.

Copyright 2008 by Pearson Education
5

Modified Employee class
public class Employee {

 private int years;

 public Employee(int initialYears) {

 years = initialYears;

 }

 public int getHours() {

 return 40;

 }

 public double getSalary() {

 return 50000.0;

 }

 public int getVacationDays() {

 return 10 + 2 * years;

 }

 public String getVacationForm() {

 return "yellow";

 }

}

Copyright 2008 by Pearson Education
6

Problem with constructors
 Now that we've added the constructor to the Employee

class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol

symbol : constructor Employee()

location: class Employee

public class Lawyer extends Employee {

 ^

 The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

 The long explanation: (next slide)

Copyright 2008 by Pearson Education
7

The detailed explanation
 Constructors are not inherited.

 Subclasses don't inherit the Employee(int) constructor.

 Subclasses receive a default constructor that contains:

public Lawyer() {

 super(); // calls Employee() constructor

}

 But our Employee(int) replaces the default Employee().

 The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

Copyright 2008 by Pearson Education
8

Calling superclass constructor

 super(parameters);

 Example:

 public class Lawyer extends Employee {

 public Lawyer(int years) {

 super(years); // calls Employee constructor

 }

 ...

 }

 The super call must be the first statement in the constructor.

 Exercise: Make a similar modification to the Marketer class.

Copyright 2008 by Pearson Education
9

Modified Marketer class
// A class to represent marketers.

public class Marketer extends Employee {

 public Marketer(int years) {

 super(years);

 }

 public void advertise() {

 System.out.println("Act now while supplies last!");

 }

 public double getSalary() {

 return super.getSalary() + 10000.0;

 }

}

 Exercise: Modify the Secretary subclass.

 Secretaries' years of employment are not tracked.

 They do not earn extra vacation for years worked.

Copyright 2008 by Pearson Education
10

Modified Secretary class
// A class to represent secretaries.

public class Secretary extends Employee {

 public Secretary() {

 super(0);

 }

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

 Since Secretary doesn't require any parameters to its

constructor, LegalSecretary compiles without a constructor.

 Its default constructor calls the Secretary() constructor.

Copyright 2008 by Pearson Education
11

Inheritance and fields
 Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {

 ...

 public double getSalary() {

 return super.getSalary() + 5000 * years;

 }

 ...

}

 Does not work; the error is the following:
Lawyer.java:7: years has private access in Employee

 return super.getSalary() + 5000 * years;

 ^

 Private fields cannot be directly accessed from subclasses.

 One reason: So that subclassing can't break encapsulation.

 How can we get around this limitation?

Copyright 2008 by Pearson Education
12

Improved Employee code
Add an accessor for any field needed by the subclass.

public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getYears() {
 return years;
 }
 ...
}

public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years);
 }

 public double getSalary() {
 return super.getSalary() + 5000 * getYears();
 }
 ...
}

Copyright 2008 by Pearson Education
13

Revisiting Secretary

 The Secretary class currently has a poor solution.

 We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

 If we call getYears on a Secretary object, we'll always get 0.

 This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

 Redesign our Employee class to allow for a better solution.

Copyright 2008 by Pearson Education
14

Improved Employee code

• Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getVacationDays() {
 return 10 + getSeniorityBonus();
 }

 // vacation days given for each year in the company
 public int getSeniorityBonus() {
 return 2 * years;
 }
 ...
}

 How does this help us improve the Secretary?

Copyright 2008 by Pearson Education
15

Improved Secretary code

• Secretary can selectively override getSeniorityBonus;
when getVacationDays runs, it will use the new version.

 Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {

 public Secretary(int years) {

 super(years);

 }

 // Secretaries don't get a bonus for their years of service.

 public int getSeniorityBonus() {

 return 0;

 }

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

Copyright 2008 by Pearson Education

Homework 8:
Critters

reading: HW8 spec

Copyright 2008 by Pearson Education
17

CSE 142 Critters
 Ant

 Bird

 Hippo

 Vulture

 Husky (creative)

 behavior:

 eat eating food

 fight animal fighting

 getColor color to display

 getMove movement

 toString letter to display

Copyright 2008 by Pearson Education
18

A Critter subclass
public class name extends Critter { ... }

public abstract class Critter {

 public boolean eat()

 public Attack fight(String opponent)

 // ROAR, POUNCE, SCRATCH

 public Color getColor()

 public Direction getMove()

 // NORTH, SOUTH, EAST, WEST, CENTER

 public String toString()

}

Copyright 2008 by Pearson Education
19

How the simulator works
 "Go" → loop:

 move each animal (getMove)

 if they collide, fight

 if they find food, eat

 Simulator is in control!

 getMove is one move at a time

 (no loops)

 Keep state (fields)

 to remember future moves

%

Next
move?

Copyright 2008 by Pearson Education
20

Development Strategy
 Do one species at a time

 in ABC order from easier to harder (Ant → Bird → ...)

 debug printlns

 Simulator helps you debug

 smaller width/height

 fewer animals

 "Tick" instead of "Go"

 "Debug" checkbox

 drag/drop to move animals

Copyright 2008 by Pearson Education
21

Critter exercise: Cougar

 Write a critter class Cougar:

Method Behavior

constructor public Cougar()

eat Always eats.

fight Always pounces.

getColor Blue if the Cougar has never fought; red if he has.

getMove Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

toString "C"

Copyright 2008 by Pearson Education
22

Ideas for state
 You must not only have the right state, but update that

state properly when relevant actions occur.

 Counting is helpful:

 How many total moves has this animal made?

 How many times has it eaten? Fought?

 Remembering recent actions in fields is helpful:

 Which direction did the animal move last?

 How many times has it moved that way?

 Did the animal eat the last time it was asked?

 How many steps has the animal taken since last eating?

 How many fights has the animal been in since last eating?

Copyright 2008 by Pearson Education
23

Cougar solution
import java.awt.*; // for Color

public class Cougar extends Critter {

 private boolean west;

 private boolean fought;

 public Cougar() {

 west = true;

 fought = false;

 }

 public boolean eat() {

 west = !west;

 return true;

 }

 public Attack fight(String opponent) {

 fought = true;

 return Attack.POUNCE;

 }

 ...

Copyright 2008 by Pearson Education
24

Cougar solution
 ...

 public Color getColor() {

 if (fought) {

 return Color.RED;

 } else {

 return Color.BLUE;

 }

 }

 public Direction getMove() {

 if (west) {

 return Direction.WEST;

 } else {

 return Direction.EAST;

 }

 }

 public String toString() {

 return "C";

 }

}

