
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 19: encapsulation, inheritance

reading: 8.5 - 8.6

(Slides adapted from Stuart Reges, Hélène
Martin, and Marty Stepp)

Copyright 2008 by Pearson Education
2

Copyright 2008 by Pearson Education
3

Encapsulation
 encapsulation: Hiding implementation details of an

object from its clients.

 Encapsulation provides abstraction.

 separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
4

Private fields
 A field can be declared private.

 No code outside the class can access or change it.

 private type name;

 Examples:

 private int id;

 private String name;

 Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

 ^

Copyright 2008 by Pearson Education
5

Accessing private state
 We can provide methods to get and/or set a field's value:

 // A "read-only" access to the x field ("accessor")

 public int getX() {

 return x;

 }

 // Allows clients to change the x field ("mutator")

 public void setX(int newX) {

 x = newX;

 }

 Client code will look more like this:

 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

 p1.setX(14);

Copyright 2008 by Pearson Education
6

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {
 private int x;
 private int y;

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Copyright 2008 by Pearson Education
7

Client code, version 4
public class PointMain4 {

 public static void main(String[] args) {

 // create two Point objects

 Point p1 = new Point(5, 2);

 Point p2 = new Point(4, 3);

 // print each point

 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

 // move p2 and then print it again

 p2.translate(2, 4);

 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

 }

}

OUTPUT:
p1 is (5, 2)

p2 is (4, 3)

p2 is (6, 7)

Copyright 2008 by Pearson Education
8

Benefits of encapsulation
 Provides abstraction between an object and its clients.

 Protects an object from unwanted access by clients.

 A bank app forbids a client to change an Account's balance.

 Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

 Allows you to constrain objects' state (invariants).

 Example: Only allow Points with non-negative coordinates.

Copyright 2008 by Pearson Education

Inheritance

reading: 9.1

Copyright 2008 by Pearson Education
10

Law firm employee analogy
 common rules: hours, vacation, benefits, regulations ...

 all employees attend a common orientation to learn general
company rules

 each employee receives a 20-page manual of common rules

 each subdivision also has specific rules:

 employee receives a smaller (1-3 page) manual of these rules

 smaller manual adds some new rules and also changes some
rules from the large manual

Copyright 2008 by Pearson Education
11

Separating behavior
 Why not just have a 22 page Lawyer manual, a 21-page

Secretary manual, a 23-page Marketer manual, etc.?

 Some advantages of the separate manuals:

 maintenance: Only one update if a common rule changes.

 locality: Quick discovery of all rules specific to lawyers.

 Some key ideas from this example:

 General rules are useful (the 20-page manual).

 Specific rules that may override general ones are also useful.

Copyright 2008 by Pearson Education
12

Is-a relationships, hierarchies

 is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of another.

 every marketer is an employee

 every legal secretary is a secretary

 inheritance hierarchy: A set of classes connected by is-a
relationships that can share common code.

Copyright 2008 by Pearson Education
13

Employee regulations
 Consider the following employee regulations:

 Employees work 40 hours / week.

 Employees make $40,000 per year, except legal secretaries who

make $5,000 extra per year ($45,000 total), and marketers who

make $10,000 extra per year ($50,000 total).

 Employees have 2 weeks of paid vacation leave per year, except

lawyers who get an extra week (a total of 3).

 Employees should use a yellow form to apply for leave, except for

lawyers who use a pink form.

 Each type of employee has some unique behavior:

 Lawyers know how to sue.

 Marketers know how to advertise.

 Secretaries know how to take dictation.

 Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education
14

An Employee class
// A class to represent employees in general (20-page manual).

public class Employee {

 public int getHours() {

 return 40; // works 40 hours / week

 }

 public double getSalary() {

 return 40000.0; // $40,000.00 / year

 }

 public int getVacationDays() {

 return 10; // 2 weeks' paid vacation

 }

 public String getVacationForm() {

 return "yellow"; // use the yellow form

 }

}

 Exercise: Implement class Secretary, based on the previous
employee regulations. (Secretaries can take dictation.)

Copyright 2008 by Pearson Education
15

Redundant Secretary class
// A redundant class to represent secretaries.

public class Secretary {

 public int getHours() {

 return 40; // works 40 hours / week

 }

 public double getSalary() {

 return 40000.0; // $40,000.00 / year

 }

 public int getVacationDays() {

 return 10; // 2 weeks' paid vacation

 }

 public String getVacationForm() {

 return "yellow"; // use the yellow form

 }

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

Copyright 2008 by Pearson Education
16

Desire for code-sharing
 takeDictation is the only unique behavior in Secretary.

 We'd like to be able to say:

// A class to represent secretaries.

public class Secretary {

 copy all the contents from the Employee class;

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

Copyright 2008 by Pearson Education
17

Inheritance
 inheritance: A way to form new classes based on existing

classes, taking on their attributes/behavior.

 a way to group related classes

 a way to share code between two or more classes

 One class can extend another, absorbing its data/behavior.

 superclass: The parent class that is being extended.

 subclass: The child class that extends the superclass and
inherits its behavior.

 Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education
18

Inheritance syntax
 public class name extends superclass {

 Example:

 public class Secretary extends Employee {

 ...

 }

 By extending Employee, each Secretary object now:

 receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

 can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education
19

Improved Secretary code
// A class to represent secretaries.

public class Secretary extends Employee {

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: " + text);

 }

}

 Now we only write the parts unique to each type.

 Secretary inherits getHours, getSalary, getVacationDays,
and getVacationForm methods from Employee.

 Secretary adds the takeDictation method.

Copyright 2008 by Pearson Education
20

Implementing Lawyer

 Consider the following lawyer regulations:

 Lawyers who get an extra week of paid vacation (a total of 3).

 Lawyers use a pink form when applying for vacation leave.

 Lawyers have some unique behavior: they know how to sue.

 Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

Copyright 2008 by Pearson Education
21

Overriding methods
 override: To write a new version of a method in a subclass

that replaces the superclass's version.

 No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

 public class Lawyer extends Employee {

 // overrides getVacationForm method in Employee class

 public String getVacationForm() {

 return "pink";

 }

 ...

 }

 Exercise: Complete the Lawyer class.

 (3 weeks vacation, pink vacation form, can sue)

Copyright 2008 by Pearson Education
22

Lawyer class
// A class to represent lawyers.

public class Lawyer extends Employee {

 // overrides getVacationForm from Employee class

 public String getVacationForm() {

 return "pink";

 }

 // overrides getVacationDays from Employee class

 public int getVacationDays() {

 return 15; // 3 weeks vacation

 }

 public void sue() {

 System.out.println("I'll see you in court!");

 }

}

 Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

Copyright 2008 by Pearson Education
23

Marketer class
// A class to represent marketers.

public class Marketer extends Employee {

 public void advertise() {

 System.out.println("Act now while supplies last!");

 }

 public double getSalary() {

 return 50000.0; // $50,000.00 / year

 }

}

Copyright 2008 by Pearson Education
24

Levels of inheritance
 Multiple levels of inheritance in a hierarchy are allowed.

 Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

 public class LegalSecretary extends Secretary {

 ...

 }

 Exercise: Complete the LegalSecretary class.

Copyright 2008 by Pearson Education
25

LegalSecretary class
// A class to represent legal secretaries.

public class LegalSecretary extends Secretary {

 public void fileLegalBriefs() {

 System.out.println("I could file all day!");

 }

 public double getSalary() {

 return 45000.0; // $45,000.00 / year

 }

}

