
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8

Lecture 18: Classes and Objects

reading: 8.1 - 8.2

(Slides adapted from Stuart Reges, Hélène Martin, and
Marty Stepp)

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

File output

reading: 6.4 - 6.5

Copyright 2010 by Pearson Education
4

Output to files
 PrintStream: An object in the java.io package that lets

you print output to a destination such as a file.

 Any methods you have used on System.out

(such as print, println) will work on a PrintStream.

 Syntax:

PrintStream <name> = new PrintStream(new File("<filename>"));

Example:
PrintStream output = new PrintStream(new File("out.txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

Copyright 2010 by Pearson Education
5

Details about PrintStream

PrintStream <name> = new PrintStream(new File("<filename>"));

 If the given file does not exist, it is created.

 If the given file already exists, it is overwritten.

 The output you print appears in a file, not on the console.

You will have to open the file with an editor to see it.

 Do not open the same file for both reading (Scanner)

and writing (PrintStream) at the same time.

 You will overwrite your input file with an empty file (0 bytes).

Copyright 2010 by Pearson Education
6

System.out and PrintStream

 The console output object, System.out, is a PrintStream.

PrintStream out1 = System.out;

PrintStream out2 = new PrintStream(new File("data.txt"));

out1.println("Hello, console!"); // goes to console

out2.println("Hello, file!"); // goes to file

 A reference to it can be stored in a PrintStream variable.

 Printing to that variable causes console output to appear.

 You can pass System.out to a method as a PrintStream.

 Allows a method to send output to the console or a file.

Copyright 2010 by Pearson Education
7

Objects and classes

reading: 8.1 – 8.2

Copyright 2010 by Pearson Education
8

Clients of objects
 client program: A program that uses objects.

 Example: Shapes is a client of DrawingPanel and Graphics.

Shapes.java (client program)

public class Shapes {

 main(String[] args) {

 new DrawingPanel(...)

 new DrawingPanel(...)

 ...

 }

}

DrawingPanel.java (class)

public class DrawingPanel {

 ...

}

Copyright 2010 by Pearson Education
9

A programming problem
 Given a file of cities' (x, y) coordinates,

which begins with the number of cities:

6

50 20

90 60

10 72

74 98

5 136

150 91

 Write a program to draw the cities on a DrawingPanel, then
simulates an earthquake that turns all cities red that are within a
given radius:

Epicenter x? 100

Epicenter y? 100

Affected radius? 75

Copyright 2010 by Pearson Education
10

A bad solution

Scanner input = new Scanner(new File("cities.txt"));

int cityCount = input.nextInt();

int[] xCoords = new int[cityCount];

int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {

 xCoords[i] = input.nextInt(); // read each city

 yCoords[i] = input.nextInt();

}

...

 parallel arrays: 2+ arrays with related data at same
indexes.

 Considered poor style.

Copyright 2010 by Pearson Education
11

Observations
 The data in this problem is a set of points.

 It would be better stored as Point objects.

 A Point would store a city's x/y data.

 We could compare distances between Points

to see whether the earthquake hit a given city.

 Each Point would know how to draw itself.

 The overall program would be shorter and cleaner.

Copyright 2010 by Pearson Education
12

Classes and objects
 class: A program entity that represents either:

 1. A program / module, or

 2. A template for a new type of objects.

 The DrawingPanel class is a template for creating
DrawingPanel objects.

 object: An entity that combines state and behavior.

 object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

Copyright 2010 by Pearson Education
13

Blueprint analogy
iPod blueprint

state:
 current song
 volume
 battery life

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #1

state:
 song = "1,000,000 Miles"
 volume = 17
 battery life = 2.5 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #2

state:
 song = "Letting You"
 volume = 9
 battery life = 3.41 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #3

state:
 song = "Discipline"
 volume = 24
 battery life = 1.8 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

creates

Copyright 2010 by Pearson Education
14

Abstraction
 abstraction: A distancing between ideas and details.

 We can use objects without knowing how they work.

 abstraction in an iPod:

 You understand its external behavior (buttons, screen).

 You don't understand its inner details, and you don't need to.

Copyright 2010 by Pearson Education
15

Our task
 In the following slides, we will implement a Point class as

a way of learning about defining classes.

 We will define a type of objects named Point.

 Each Point object will contain x/y data called fields.

 Each Point object will contain behavior called methods.

 Client programs will use the Point objects.

Copyright 2010 by Pearson Education
16

Point objects (desired)
 Point p1 = new Point(5, -2);

 Point p2 = new Point(); // origin, (0, 0)

 Data in each Point object:

 Methods in each Point object:

Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

draw(g) displays the point on a drawing panel

Field name Description

x the point's x-coordinate

y the point's y-coordinate

Copyright 2010 by Pearson Education
17

Point class as blueprint

 The class (blueprint) will describe how to create objects.
 Each object will contain its own data and methods.

Point class

state:
int x, y

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

draw(Graphics g)

Point object #1

state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2

state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Copyright 2010 by Pearson Education
18

Object state:
Fields

reading: 8.2

Copyright 2010 by Pearson Education
19

Point class, version 1
public class Point {

 int x;

 int y;

}

 Save this code into a file named Point.java.

 The above code creates a new type named Point.

 Each Point object contains two pieces of data:

 an int named x, and

 an int named y.

 Point objects do not contain any behavior (yet).

Copyright 2010 by Pearson Education
20

Fields
 field: A variable inside an object that is part of its state.

 Each object has its own copy of each field.

 Declaration syntax:

 type name;

 Example:

 public class Student {

 String name; // each Student object has a

 double gpa; // name and gpa field

 }

Copyright 2010 by Pearson Education
21

Accessing fields
 Other classes can access/modify an object's fields.

 access: variable.field

 modify: variable.field = value;

 Example:

Point p1 = new Point();

Point p2 = new Point();

System.out.println("the x-coord is " + p1.x); // access

p2.y = 13; // modify

Copyright 2010 by Pearson Education
22

A class and its client
 Point.java is not, by itself, a runnable program.

 A class can be used by client programs.

PointMain.java (client program)

public class PointMain {

 main(String args) {

 Point p1 = new Point();

 p1.x = 7;

 p1.y = 2;

 Point p2 = new Point();

 p2.x = 4;

 p2.y = 3;

 ...

 }

}

Point.java (class of objects)

public class Point {

 int x;

 int y;

}

x 7 y 2

x 4 y 3

Copyright 2010 by Pearson Education
23

PointMain client example
public class PointMain {

 public static void main(String[] args) {

 // create two Point objects

 Point p1 = new Point();

 p1.y = 2;

 Point p2 = new Point();

 p2.x = 4;

 System.out.println(p1.x + ", " + p1.y); // 0, 2

 // move p2 and then print it

 p2.x += 2;

 p2.y++;

 System.out.println(p2.x + ", " + p2.y); // 6, 1

 }

}

Copyright 2010 by Pearson Education
24

Object behavior:
Methods

reading: 8.3

Copyright 2010 by Pearson Education
25

Client code redundancy
 Suppose our client program wants to draw Point objects:

// draw each city

Point p1 = new Point();

p1.x = 15;

p1.y = 37;

g.fillOval(p1.x, p1.y, 3, 3);

g.drawString("(" + p1.x + ", " + p1.y + ")", p1.x, p1.y);

 To draw other points, the same code must be repeated.

 We can remove this redundancy using a method.

Copyright 2010 by Pearson Education
26

Eliminating redundancy, v1
 We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.

public static void draw(Point p, Graphics g) {

 g.fillOval(p.x, p.y, 3, 3);

 g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);

}

 main would call the method as follows:

draw(p1, g);

Copyright 2010 by Pearson Education
27

Problems with static solution

 We are missing a major benefit of objects: code reuse.

 Every program that draws Points would need a draw method.

 The syntax doesn't match how we're used to using objects.

 draw(p1, g); // static (bad)

 The point of classes is to combine state and behavior.

 The draw behavior is closely related to a Point's data.

 The method belongs inside each Point object.

 p1.draw(g); // inside the object (better)

Copyright 2010 by Pearson Education
28

Instance methods
 instance method (or object method): Exists inside each

object of a class and gives behavior to each object.

 public type name(parameters) {

 statements;

 }

 same syntax as static methods, but without static keyword

 Example:

 public void shout() {

 System.out.println("HELLO THERE!");

 }

Copyright 2010 by Pearson Education
29

Instance method example
public class Point {

 int x;

 int y;

 // Draws this Point object with the given pen.

 public void draw(Graphics g) {

 ...

 }

}

 The draw method no longer has a Point p parameter.

 How will the method know which point to draw?

 How will the method access that point's x/y data?

Copyright 2010 by Pearson Education
30

 Each Point object has its own copy of the draw method, which

operates on that object's state:

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

p1.draw(g);

p2.draw(g);

public void draw(Graphics g) {

 // this code can see p1's x and y

}

Point objects w/ method

x 7 y 2

x 4 y 3

public void draw(Graphics g) {

 // this code can see p2's x and y

}

p2

p1

Copyright 2010 by Pearson Education
31

The implicit parameter
 implicit parameter:

The object on which an instance method is called.

 During the call p1.draw(g);

the object referred to by p1 is the implicit parameter.

 During the call p2.draw(g);

the object referred to by p2 is the implicit parameter.

 The instance method can refer to that object's fields.

 We say that it executes in the context of a particular object.

 draw can refer to the x and y of the object it was called on.

Copyright 2010 by Pearson Education
32

Point class, version 2
public class Point {

 int x;

 int y;

 // Changes the location of this Point object.

 public void draw(Graphics g) {

 g.fillOval(x, y, 3, 3);

 g.drawString("(" + x + ", " + y + ")", x, y);

 }

}

 Each Point object contains a draw method that draws that

point at its current x/y position.

Copyright 2010 by Pearson Education
33

Class method questions
 Write a method translate that changes a Point's location

by a given dx, dy amount.

 Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

 Use the formula:

 Modify the Point and client code to use these methods.

 212

2

12 yyxx

Copyright 2010 by Pearson Education
34

Class method answers
public class Point {

 int x;

 int y;

 public void translate(int dx, int dy) {

 x = x + dx;

 y = y + dy;

 }

 public double distanceFromOrigin() {

 return Math.sqrt(x * x + y * y);

 }

}

Copyright 2010 by Pearson Education
35

Kinds of methods
 accessor: A method that lets clients examine object state.

 Examples: distance, distanceFromOrigin

 often has a non-void return type

 mutator: A method that modifies an object's state.

 Examples: setLocation, translate

Copyright 2010 by Pearson Education
36

Why objects?
 Primitive types don't model complex concepts well

 Cost is a double. What's a person?

 Classes are a way to define new types

 Many objects can be made from those types

 Values of the same type often are used in similar ways

 Promote code reuse through instance methods

Copyright 2010 by Pearson Education
37

Object initialization:
constructors

reading: 8.3

Copyright 2010 by Pearson Education
38

Initializing objects
 Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

 We'd rather specify the fields' initial values at the start:

Point p = new Point(3, 8); // desired; doesn't work (yet)

 We are able to this with most types of objects in Java.

Copyright 2010 by Pearson Education
39

Constructors

 constructor: Initializes the state of new objects.

 public type(parameters) {
 statements;
 }

 runs when the client uses the new keyword

 no return type is specified;

it implicitly "returns" the new object being created

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all fields to 0.

Copyright 2010 by Pearson Education
40

Constructor example

public class Point {

 int x;

 int y;

 // Constructs a Point at the given x/y location.

 public Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

 }

 public void translate(int dx, int dy) {

 x = x + dx;

 y = y + dy;

 }

 ...

}

Copyright 2010 by Pearson Education
41

Tracing a constructor call
 What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

}

public void translate(int dx, int dy) {

 x += dx;

 y += dy;

}

x y p1

Copyright 2010 by Pearson Education
42

Common constructor bugs
1. Re-declaring fields as local variables ("shadowing"):

 public Point(int initialX, int initialY) {

 int x = initialX;

 int y = initialY;

 }

 This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:

 public void Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

 }

 This is actually not a constructor, but a method named Point

Copyright 2010 by Pearson Education
43

Client code, version 3
public class PointMain3 {

 public static void main(String[] args) {

 // create two Point objects

 Point p1 = new Point(5, 2);

 Point p2 = new Point(4, 3);

 // print each point

 System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 // move p2 and then print it again

 p2.translate(2, 4);

 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 }

}

OUTPUT:
p1: (5, 2)

p2: (4, 3)

p2: (6, 7)

Copyright 2010 by Pearson Education
44

Multiple constructors
 A class can have multiple constructors.

 Each one must accept a unique set of parameters.

 Exercise: Write a Point constructor with no parameters

that initializes the point to (0, 0).

// Constructs a new point at (0, 0).

public Point() {

 x = 0;

 y = 0;

}

Copyright 2010 by Pearson Education
45

Printing objects
 By default, Java doesn't know how to print objects:

Point p = new Point();

p.x = 10;

p.y = 7;

System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)

System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior

System.out.println("p is " + p); // p is (10, 7)

Copyright 2010 by Pearson Education
46

The toString method

tells Java how to convert an object into a String

 Point p1 = new Point(7, 2);

 System.out.println("p1: " + p1);

 // the above code is really calling the following:

 System.out.println("p1: " + p1.toString());

 Every class has a toString, even if it isn't in your code.

 Default: class's name @ object's memory address (base 16)

 Point@9e8c34

Copyright 2010 by Pearson Education
47

toString syntax
 public String toString() {

 code that returns a String representing this object;

 }

 Method name, return, and parameters must match exactly.

 Example:

 // Returns a String representing this Point.

 public String toString() {

 return "(" + x + ", " + y + ")";

 }

Copyright 2010 by Pearson Education
48

The keyword this

reading: 8.7

Copyright 2010 by Pearson Education
49

this

 this : A reference to the implicit parameter.

 implicit parameter: object on which a method is called

 Syntax for using this:

 To refer to a field:

 this.field

 To call a method:

 this.method(parameters);

 To call a constructor from another constructor:

 this(parameters);

Copyright 2010 by Pearson Education
50

Variable names and scope
 Usually it is illegal to have two variables in the same scope

with the same name.

 public class Point {

 private int x;

 private int y;

 ...

 public void setLocation(int newX, int newY) {

 x = newX;

 y = newY;

 }

 }

 The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2010 by Pearson Education
51

Variable shadowing
 An instance method parameter can have the same name as

one of the object's fields:

 // this is legal

 public void setLocation(int x, int y) {

 ...

 }

 Fields x and y are shadowed by parameters with same names.

 Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2010 by Pearson Education
52

Avoiding shadowing w/ this
 public class Point {

 private int x;

 private int y;

 ...

 public void setLocation(int x, int y) {

 this.x = x;

 this.y = y;

 }

 }

 Inside the setLocation method,

 When this.x is seen, the field x is used.

 When x is seen, the parameter x is used.

Copyright 2010 by Pearson Education
53

Multiple constructors
 It is legal to have more than one constructor in a class.

 The constructors must accept different parameters.

 public class Point {

 private int x;

 private int y;

 public Point() {
 x = 0;
 y = 0;
 }

 public Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

 }

 ...

 }

Copyright 2010 by Pearson Education
54

Constructors and this

 One constructor can call another using this:

 public class Point {

 private int x;

 private int y;

 public Point() {

 this(0, 0); // calls the (x, y) constructor

 }

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 ...

 }

