
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8

Lecture 18: Classes and Objects

reading: 8.1 - 8.2

(Slides adapted from Stuart Reges, Hélène Martin, and
Marty Stepp)

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

File output

reading: 6.4 - 6.5

Copyright 2010 by Pearson Education
4

Output to files
 PrintStream: An object in the java.io package that lets

you print output to a destination such as a file.

 Any methods you have used on System.out

(such as print, println) will work on a PrintStream.

 Syntax:

PrintStream <name> = new PrintStream(new File("<filename>"));

Example:
PrintStream output = new PrintStream(new File("out.txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

Copyright 2010 by Pearson Education
5

Details about PrintStream

PrintStream <name> = new PrintStream(new File("<filename>"));

 If the given file does not exist, it is created.

 If the given file already exists, it is overwritten.

 The output you print appears in a file, not on the console.

You will have to open the file with an editor to see it.

 Do not open the same file for both reading (Scanner)

and writing (PrintStream) at the same time.

 You will overwrite your input file with an empty file (0 bytes).

Copyright 2010 by Pearson Education
6

System.out and PrintStream

 The console output object, System.out, is a PrintStream.

PrintStream out1 = System.out;

PrintStream out2 = new PrintStream(new File("data.txt"));

out1.println("Hello, console!"); // goes to console

out2.println("Hello, file!"); // goes to file

 A reference to it can be stored in a PrintStream variable.

 Printing to that variable causes console output to appear.

 You can pass System.out to a method as a PrintStream.

 Allows a method to send output to the console or a file.

Copyright 2010 by Pearson Education
7

Objects and classes

reading: 8.1 – 8.2

Copyright 2010 by Pearson Education
8

Clients of objects
 client program: A program that uses objects.

 Example: Shapes is a client of DrawingPanel and Graphics.

Shapes.java (client program)

public class Shapes {

 main(String[] args) {

 new DrawingPanel(...)

 new DrawingPanel(...)

 ...

 }

}

DrawingPanel.java (class)

public class DrawingPanel {

 ...

}

Copyright 2010 by Pearson Education
9

A programming problem
 Given a file of cities' (x, y) coordinates,

which begins with the number of cities:

6

50 20

90 60

10 72

74 98

5 136

150 91

 Write a program to draw the cities on a DrawingPanel, then
simulates an earthquake that turns all cities red that are within a
given radius:

Epicenter x? 100

Epicenter y? 100

Affected radius? 75

Copyright 2010 by Pearson Education
10

A bad solution

Scanner input = new Scanner(new File("cities.txt"));

int cityCount = input.nextInt();

int[] xCoords = new int[cityCount];

int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {

 xCoords[i] = input.nextInt(); // read each city

 yCoords[i] = input.nextInt();

}

...

 parallel arrays: 2+ arrays with related data at same
indexes.

 Considered poor style.

Copyright 2010 by Pearson Education
11

Observations
 The data in this problem is a set of points.

 It would be better stored as Point objects.

 A Point would store a city's x/y data.

 We could compare distances between Points

to see whether the earthquake hit a given city.

 Each Point would know how to draw itself.

 The overall program would be shorter and cleaner.

Copyright 2010 by Pearson Education
12

Classes and objects
 class: A program entity that represents either:

 1. A program / module, or

 2. A template for a new type of objects.

 The DrawingPanel class is a template for creating
DrawingPanel objects.

 object: An entity that combines state and behavior.

 object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

Copyright 2010 by Pearson Education
13

Blueprint analogy
iPod blueprint

state:
 current song
 volume
 battery life

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #1

state:
 song = "1,000,000 Miles"
 volume = 17
 battery life = 2.5 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #2

state:
 song = "Letting You"
 volume = 9
 battery life = 3.41 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #3

state:
 song = "Discipline"
 volume = 24
 battery life = 1.8 hrs

behavior:
 power on/off
 change station/song
 change volume
 choose random song

creates

Copyright 2010 by Pearson Education
14

Abstraction
 abstraction: A distancing between ideas and details.

 We can use objects without knowing how they work.

 abstraction in an iPod:

 You understand its external behavior (buttons, screen).

 You don't understand its inner details, and you don't need to.

Copyright 2010 by Pearson Education
15

Our task
 In the following slides, we will implement a Point class as

a way of learning about defining classes.

 We will define a type of objects named Point.

 Each Point object will contain x/y data called fields.

 Each Point object will contain behavior called methods.

 Client programs will use the Point objects.

Copyright 2010 by Pearson Education
16

Point objects (desired)
 Point p1 = new Point(5, -2);

 Point p2 = new Point(); // origin, (0, 0)

 Data in each Point object:

 Methods in each Point object:

Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

draw(g) displays the point on a drawing panel

Field name Description

x the point's x-coordinate

y the point's y-coordinate

Copyright 2010 by Pearson Education
17

Point class as blueprint

 The class (blueprint) will describe how to create objects.
 Each object will contain its own data and methods.

Point class

state:
int x, y

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

draw(Graphics g)

Point object #1

state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2

state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Copyright 2010 by Pearson Education
18

Object state:
Fields

reading: 8.2

Copyright 2010 by Pearson Education
19

Point class, version 1
public class Point {

 int x;

 int y;

}

 Save this code into a file named Point.java.

 The above code creates a new type named Point.

 Each Point object contains two pieces of data:

 an int named x, and

 an int named y.

 Point objects do not contain any behavior (yet).

Copyright 2010 by Pearson Education
20

Fields
 field: A variable inside an object that is part of its state.

 Each object has its own copy of each field.

 Declaration syntax:

 type name;

 Example:

 public class Student {

 String name; // each Student object has a

 double gpa; // name and gpa field

 }

Copyright 2010 by Pearson Education
21

Accessing fields
 Other classes can access/modify an object's fields.

 access: variable.field

 modify: variable.field = value;

 Example:

Point p1 = new Point();

Point p2 = new Point();

System.out.println("the x-coord is " + p1.x); // access

p2.y = 13; // modify

Copyright 2010 by Pearson Education
22

A class and its client
 Point.java is not, by itself, a runnable program.

 A class can be used by client programs.

PointMain.java (client program)

public class PointMain {

 main(String args) {

 Point p1 = new Point();

 p1.x = 7;

 p1.y = 2;

 Point p2 = new Point();

 p2.x = 4;

 p2.y = 3;

 ...

 }

}

Point.java (class of objects)

public class Point {

 int x;

 int y;

}

x 7 y 2

x 4 y 3

Copyright 2010 by Pearson Education
23

PointMain client example
public class PointMain {

 public static void main(String[] args) {

 // create two Point objects

 Point p1 = new Point();

 p1.y = 2;

 Point p2 = new Point();

 p2.x = 4;

 System.out.println(p1.x + ", " + p1.y); // 0, 2

 // move p2 and then print it

 p2.x += 2;

 p2.y++;

 System.out.println(p2.x + ", " + p2.y); // 6, 1

 }

}

Copyright 2010 by Pearson Education
24

Object behavior:
Methods

reading: 8.3

Copyright 2010 by Pearson Education
25

Client code redundancy
 Suppose our client program wants to draw Point objects:

// draw each city

Point p1 = new Point();

p1.x = 15;

p1.y = 37;

g.fillOval(p1.x, p1.y, 3, 3);

g.drawString("(" + p1.x + ", " + p1.y + ")", p1.x, p1.y);

 To draw other points, the same code must be repeated.

 We can remove this redundancy using a method.

Copyright 2010 by Pearson Education
26

Eliminating redundancy, v1
 We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.

public static void draw(Point p, Graphics g) {

 g.fillOval(p.x, p.y, 3, 3);

 g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);

}

 main would call the method as follows:

draw(p1, g);

Copyright 2010 by Pearson Education
27

Problems with static solution

 We are missing a major benefit of objects: code reuse.

 Every program that draws Points would need a draw method.

 The syntax doesn't match how we're used to using objects.

 draw(p1, g); // static (bad)

 The point of classes is to combine state and behavior.

 The draw behavior is closely related to a Point's data.

 The method belongs inside each Point object.

 p1.draw(g); // inside the object (better)

Copyright 2010 by Pearson Education
28

Instance methods
 instance method (or object method): Exists inside each

object of a class and gives behavior to each object.

 public type name(parameters) {

 statements;

 }

 same syntax as static methods, but without static keyword

 Example:

 public void shout() {

 System.out.println("HELLO THERE!");

 }

Copyright 2010 by Pearson Education
29

Instance method example
public class Point {

 int x;

 int y;

 // Draws this Point object with the given pen.

 public void draw(Graphics g) {

 ...

 }

}

 The draw method no longer has a Point p parameter.

 How will the method know which point to draw?

 How will the method access that point's x/y data?

Copyright 2010 by Pearson Education
30

 Each Point object has its own copy of the draw method, which

operates on that object's state:

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

p1.draw(g);

p2.draw(g);

public void draw(Graphics g) {

 // this code can see p1's x and y

}

Point objects w/ method

x 7 y 2

x 4 y 3

public void draw(Graphics g) {

 // this code can see p2's x and y

}

p2

p1

Copyright 2010 by Pearson Education
31

The implicit parameter
 implicit parameter:

The object on which an instance method is called.

 During the call p1.draw(g);

the object referred to by p1 is the implicit parameter.

 During the call p2.draw(g);

the object referred to by p2 is the implicit parameter.

 The instance method can refer to that object's fields.

 We say that it executes in the context of a particular object.

 draw can refer to the x and y of the object it was called on.

Copyright 2010 by Pearson Education
32

Point class, version 2
public class Point {

 int x;

 int y;

 // Changes the location of this Point object.

 public void draw(Graphics g) {

 g.fillOval(x, y, 3, 3);

 g.drawString("(" + x + ", " + y + ")", x, y);

 }

}

 Each Point object contains a draw method that draws that

point at its current x/y position.

Copyright 2010 by Pearson Education
33

Class method questions
 Write a method translate that changes a Point's location

by a given dx, dy amount.

 Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

 Use the formula:

 Modify the Point and client code to use these methods.

   212

2

12 yyxx 

Copyright 2010 by Pearson Education
34

Class method answers
public class Point {

 int x;

 int y;

 public void translate(int dx, int dy) {

 x = x + dx;

 y = y + dy;

 }

 public double distanceFromOrigin() {

 return Math.sqrt(x * x + y * y);

 }

}

Copyright 2010 by Pearson Education
35

Kinds of methods
 accessor: A method that lets clients examine object state.

 Examples: distance, distanceFromOrigin

 often has a non-void return type

 mutator: A method that modifies an object's state.

 Examples: setLocation, translate

Copyright 2010 by Pearson Education
36

Why objects?
 Primitive types don't model complex concepts well

 Cost is a double. What's a person?

 Classes are a way to define new types

 Many objects can be made from those types

 Values of the same type often are used in similar ways

 Promote code reuse through instance methods

Copyright 2010 by Pearson Education
37

Object initialization:
constructors

reading: 8.3

Copyright 2010 by Pearson Education
38

Initializing objects
 Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

 We'd rather specify the fields' initial values at the start:

Point p = new Point(3, 8); // desired; doesn't work (yet)

 We are able to this with most types of objects in Java.

Copyright 2010 by Pearson Education
39

Constructors

 constructor: Initializes the state of new objects.

 public type(parameters) {
 statements;
 }

 runs when the client uses the new keyword

 no return type is specified;

it implicitly "returns" the new object being created

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all fields to 0.

Copyright 2010 by Pearson Education
40

Constructor example

public class Point {

 int x;

 int y;

 // Constructs a Point at the given x/y location.

 public Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

 }

 public void translate(int dx, int dy) {

 x = x + dx;

 y = y + dy;

 }

 ...

}

Copyright 2010 by Pearson Education
41

Tracing a constructor call
 What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

}

public void translate(int dx, int dy) {

 x += dx;

 y += dy;

}

x y p1

Copyright 2010 by Pearson Education
42

Common constructor bugs
1. Re-declaring fields as local variables ("shadowing"):

 public Point(int initialX, int initialY) {

 int x = initialX;

 int y = initialY;

 }

 This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:

 public void Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

 }

 This is actually not a constructor, but a method named Point

Copyright 2010 by Pearson Education
43

Client code, version 3
public class PointMain3 {

 public static void main(String[] args) {

 // create two Point objects

 Point p1 = new Point(5, 2);

 Point p2 = new Point(4, 3);

 // print each point

 System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 // move p2 and then print it again

 p2.translate(2, 4);

 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 }

}

OUTPUT:
p1: (5, 2)

p2: (4, 3)

p2: (6, 7)

Copyright 2010 by Pearson Education
44

Multiple constructors
 A class can have multiple constructors.

 Each one must accept a unique set of parameters.

 Exercise: Write a Point constructor with no parameters

that initializes the point to (0, 0).

// Constructs a new point at (0, 0).

public Point() {

 x = 0;

 y = 0;

}

Copyright 2010 by Pearson Education
45

Printing objects
 By default, Java doesn't know how to print objects:

Point p = new Point();

p.x = 10;

p.y = 7;

System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)

System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior

System.out.println("p is " + p); // p is (10, 7)

Copyright 2010 by Pearson Education
46

The toString method

tells Java how to convert an object into a String

 Point p1 = new Point(7, 2);

 System.out.println("p1: " + p1);

 // the above code is really calling the following:

 System.out.println("p1: " + p1.toString());

 Every class has a toString, even if it isn't in your code.

 Default: class's name @ object's memory address (base 16)

 Point@9e8c34

Copyright 2010 by Pearson Education
47

toString syntax
 public String toString() {

 code that returns a String representing this object;

 }

 Method name, return, and parameters must match exactly.

 Example:

 // Returns a String representing this Point.

 public String toString() {

 return "(" + x + ", " + y + ")";

 }

Copyright 2010 by Pearson Education
48

The keyword this

reading: 8.7

Copyright 2010 by Pearson Education
49

this

 this : A reference to the implicit parameter.

 implicit parameter: object on which a method is called

 Syntax for using this:

 To refer to a field:

 this.field

 To call a method:

 this.method(parameters);

 To call a constructor from another constructor:

 this(parameters);

Copyright 2010 by Pearson Education
50

Variable names and scope
 Usually it is illegal to have two variables in the same scope

with the same name.

 public class Point {

 private int x;

 private int y;

 ...

 public void setLocation(int newX, int newY) {

 x = newX;

 y = newY;

 }

 }

 The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2010 by Pearson Education
51

Variable shadowing
 An instance method parameter can have the same name as

one of the object's fields:

 // this is legal

 public void setLocation(int x, int y) {

 ...

 }

 Fields x and y are shadowed by parameters with same names.

 Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2010 by Pearson Education
52

Avoiding shadowing w/ this
 public class Point {

 private int x;

 private int y;

 ...

 public void setLocation(int x, int y) {

 this.x = x;

 this.y = y;

 }

 }

 Inside the setLocation method,

 When this.x is seen, the field x is used.

 When x is seen, the parameter x is used.

Copyright 2010 by Pearson Education
53

Multiple constructors
 It is legal to have more than one constructor in a class.

 The constructors must accept different parameters.

 public class Point {

 private int x;

 private int y;

 public Point() {
 x = 0;
 y = 0;
 }

 public Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

 }

 ...

 }

Copyright 2010 by Pearson Education
54

Constructors and this

 One constructor can call another using this:

 public class Point {

 private int x;

 private int y;

 public Point() {

 this(0, 0); // calls the (x, y) constructor

 }

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 ...

 }

