
1

Building Java Programs

Chapter 5
Lecture 11: while Loops,

 Fencepost Loops, and Sentinel Loops, Assertions

reading: 5.1 – 5.2

(Slides adapted from Stuart Reges, Hélène Martin, and
Marty Stepp)

2

3

Methods using charAt

 Write a method printConsonants that accepts a String as
a parameter and prints out that String with all vowels

removed

For example, the call:

printConsonants("atmosphere")

should print:

tmsphr

4

A deceptive problem...
 Write a method printLetters that prints each letter from

a word separated by commas.

For example, the call:

printLetters("Atmosphere")

 should print:

A, t, m, o, s, p, h, e, r, e

5

Flawed solutions
 public static void printLetters(String word) {
 for(int i = 0; i < word.length(); i++) {

 System.out.print(word.charAt(i) + ", ");

 }

 System.out.println(); // end line

}

 Output: A, t, m, o, s, p, h, e, r, e,

 public static void printLetters(String word) {

 for(int i = 0; i < word.length(); i++) {

 System.out.print(", " + word.charAt(i));

 }

 System.out.println(); // end line

}

 Output: , A, t, m, o, s, p, h, e, r, e

6

Fence post analogy
 We print n letters but need only n - 1 commas.

 Similar to building a fence with wires separated by posts:

 If we use a flawed algorithm that repeatedly places a post +

wire, the last post will have an extra dangling wire.

 for (length of fence) {

 place a post.

 place some wire.

 }

7

Fencepost loop
 Add a statement outside the loop to place the initial "post."

 Also called a fencepost loop or a "loop-and-a-half" solution.

 place a post.

 for (length of fence - 1) {

 place some wire.

 place a post.

 }

8

Fencepost method solution
 public static void printLetters(String word) {

 System.out.print(word.charAt(0));

 for(int i = 1; i < word.length(); i++) {

 System.out.print(", " + word.charAt(i));

 }

 System.out.println(); // end line

}

 Alternate solution: Either first or last "post" can be taken out:

public static void printLetters(String word) {

 for(int i = 0; i < word.length() - 1; i++) {

 System.out.print(word.charAt(i) + ", ");

 }

 int last = word.length() – 1;

 System.out.println(word.charAt(last)); // end line

}

9

Fencepost question
 Write a method printPrimes that prints all prime numbers

up to a max.

 Example: printPrimes(50) prints

 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

 If the maximum is less than 2, print no output.

 To help you, write a method countFactors which returns

the number of factors of a given integer.
 countFactors(20) returns 6 due to factors 1, 2, 4, 5, 10, 20.

10

Fencepost answer
// Prints all prime numbers up to the given max.

public static void printPrimes(int max) {

 if (max >= 2) {

 System.out.print("2");

 for (int i = 3; i <= max; i++) {

 if (countFactors(i) == 2) {

 System.out.print(", " + i);

 }

 }

 System.out.println();

 }

}

// Returns how many factors the given number has.

public static int countFactors(int number) {

 int count = 0;

 for (int i = 1; i <= number; i++) {

 if (number % i == 0) {

 count++; // i is a factor of number

 }

 }

 return count;

}

11

while loops

reading: 5.1

12

Categories of loops
 definite loop: Executes a known number of times.

 The for loops we have seen are definite loops.

 Print "hello" 10 times.

 Find all the prime numbers up to an integer n.

 Print each odd number between 5 and 127.

 indefinite loop: One where the number of times its body
repeats is not known in advance.

 Prompt the user until they type a non-negative number.

 Print random numbers until a prime number is printed.

 Repeat until the user has typed "q" to quit.

13

The while loop
 while loop: Repeatedly executes its

body as long as a logical test is true.

 while (test) {

 statement(s);

 }

 Example:

 int num = 1; // initialization

 while (num <= 200) { // test

 System.out.print(num + " ");

 num = num * 2; // update

 }

 // output: 1 2 4 8 16 32 64 128

14

Example while loop
// finds the first factor of 91, other than 1

int n = 91;

int factor = 2;

while (n % factor != 0) {

 factor++;

}

System.out.println("First factor is " + factor);

// output: First factor is 7

 while is better than for because we don't know how many

times we will need to increment to find the factor.

15

 sentinel: A value that signals the end of user input.

 sentinel loop: Repeats until a sentinel value is seen.

 Example: Write a program that prompts the user for text
until the user types "quit", then output the total number of
characters typed.

 (In this case, "quit" is the sentinel value.)

 Type a word (or "quit" to exit): hello
Type a word (or "quit" to exit): yay
Type a word (or "quit" to exit): quit
You typed a total of 8 characters.

Sentinel values

16

Solution?
Scanner console = new Scanner(System.in);

int sum = 0;

String response = "dummy"; // "dummy" value, anything but "quit"

while (!response.equals("quit")) {

 System.out.print("Type a word (or \"quit\" to exit): ");

 response = console.next();

 sum += response.length();

}

System.out.println("You typed a total of " + sum + " characters.");

 This solution produces the wrong output. Why?

You typed a total of 12 characters.

17

The problem with our code
 Our code uses a pattern like this:

sum = 0.

while (input is not the sentinel) {

 prompt for input; read input.

 add input length to the sum.

}

 On the last pass, the sentinel’s length (4) is added to the
sum:

 prompt for input; read input ("quit").

 add input length (4) to the sum.

 This is a fencepost problem.

 Must read N lines, but only sum the lengths of the first N-1.

18

A fencepost solution
sum = 0.

prompt for input; read input. // place a "post"

while (input is not the sentinel) {

 add input length to the sum. // place a "wire"

 prompt for input; read input. // place a "post"

}

 Sentinel loops often utilize a fencepost "loop-and-a-half"
style solution by pulling some code out of the loop.

19

Correct code
Scanner console = new Scanner(System.in);

int sum = 0;

// pull one prompt/read ("post") out of the loop

System.out.print("Type a word (or \"quit\" to exit): ");

String response = console.next();

while (!response.equals("quit")) {

 sum += response.length(); // moved to top of loop

 System.out.print("Type a word (or \"quit\" to exit): ");

 response = console.next();

}

System.out.println("You typed a total of " + sum + " characters.");

20

Sentinel as a constant
public static final String SENTINEL = "quit";

...

Scanner console = new Scanner(System.in);

int sum = 0;

// pull one prompt/read ("post") out of the loop

System.out.print("Type a word (or \"" + SENTINEL + "\" to exit): ");

String response = console.next();

while (!response.equals(SENTINEL)) {

 sum += response.length(); // moved to top of loop

 System.out.print("Type a word (or \"" + SENTINEL + "\" to exit): ");

 response = console.next();

}

System.out.println("You typed a total of " + sum + " characters.");

21

Logical assertions
 assertion: A statement that is either true or false.

Examples:

 Java was created in 1995.

 The sky is purple.

 23 is a prime number.

 10 is greater than 20.

 x divided by 2 equals 7. (depends on the value of x)

 An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

22

Reasoning about assertions
 Suppose you have the following code:

 if (x > 3) {

 // Point A

 x--;

 } else {

 // Point B

 x++;

 // Point C

 }

 // Point D

 What do you know about x's value at the three points?

 Is x > 3? Always? Sometimes? Never?

23

Assertions in code
 We can make assertions about our code and ask whether they

are true at various points in the code.
 Valid answers are ALWAYS, NEVER, or SOMETIMES.

 System.out.print("Type a nonnegative number: ");

 double number = console.nextDouble();

 // Point A: is number < 0.0 here?

 while (number < 0.0) {

 // Point B: is number < 0.0 here?

 System.out.print("Negative; try again: ");

 number = console.nextDouble();

 // Point C: is number < 0.0 here?

 }

 // Point D: is number < 0.0 here?

(SOMETIMES)

(ALWAYS)

(SOMETIMES)

(NEVER)

24

Reasoning about assertions
 Right after a variable is initialized, its value is known:

 int x = 3;

 // is x > 0? ALWAYS

 In general you know nothing about parameters' values:
 public static void mystery(int a, int b) {

 // is a == 10? SOMETIMES

 But inside an if, while, etc., you may know something:
 public static void mystery(int a, int b) {

 if (a < 0) {

 // is a == 10? NEVER

 ...

 }

 }

25

Assertions and loops
 At the start of a loop's body, the loop's test must be true:

 while (y < 10) {

 // is y < 10? ALWAYS

 ...

 }

 After a loop, the loop's test must be false:
 while (y < 10) {

 ...

 }

 // is y < 10? NEVER

 Inside a loop's body, the loop's test may become false:
 while (y < 10) {

 y++;

 // is y < 10? SOMETIMES

 }

26

"Sometimes"
 Things that cause a variable's value to be unknown

(often leads to "sometimes" answers):

 reading from a Scanner

 reading a number from a Random object

 a parameter's initial value to a method

 If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

 If you're unsure, "Sometimes" is a good guess.

27

Assertion example 1
public static void mystery(int x, int y) {

 int z = 0;

 // Point A

 while (x >= y) {

 // Point B

 x = x - y;

 z++;

 if (x != y) {

 // Point C

 z = z * 2;

 }

 // Point D

 }

 // Point E

 System.out.println(z);

}

x < y x == y z == 0

Point A

Point B

Point C

Point D

Point E

SOMETIMES SOMETIMES ALWAYS

NEVER SOMETIMES SOMETIMES

SOMETIMES NEVER NEVER

SOMETIMES SOMETIMES NEVER

ALWAYS NEVER SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

