Building Java Programs

Chapter 5
Lecture 11: while Loops,

Fencepost Loops, and Sentinel Loops, Assertions

reading: 5.1 - 5.2

(Slides adapted from Stuart Reges, Hélene Martin, and
Marty Stepp)

e
Methods using charAt

* Write a method printConsonants that accepts a string as
a parameter and prints out that string with all vowels
removed

For example, the call:

R E E e R B s el e

should print:
tmsphr

//

—_— ————————

A deceptive problem...

e Write a method printLetters that prints each letter from
a word separated by commas.

For example, the call:
SR nd fe e s R S S SR arar Sl

should print:

Loy Tma o h o er e

Jl;ﬁffﬁ%ff’flz——
Flawed solutions

i ovbY o Avat ao nls ol aRah ot NG ki oy sl sl ed K S Ry = bl (o a RN S S ISR M e A
ot arduahanagt bty
System.out.print (word.charAt(i) + ", ");

}
A B b e A // end line

}
o OUtputy oy voonmio s oy hineiyiie;

o0 0104 & VAN GRS e M i a6 MG A o etk g IV = Gkt = s GO Yo 04 W BYS AT BN s B) e
Eortintivi =l adrardirbangibhit)y sy
System.out.print (", " + word.charAt(i)):

}
SRiicerY ey e hmabia Y il i) o // end line

}

S ONEPUL A e R e

e

—_————

Fence post analogy

* We print n letters but need only n - 1 commas.

e Similar to building a fence with wires separated by posts:

» If we use a flawed algorithm that repeatedly places a post +
wire, the last post will have an extra dangling wire.

for (length of fence) {
place a post.
place some wire.

;

Fencepost loop

* Add a statement outside the loop to place the initial "post.”
» Also called a fencepost loop or a "loop-and-a-half" solution.

place a post.

for (length of fence = 1) {
place some wire.
place a post.

/

//
Fencepost method solution

® public static void printlLetters (String word) {
System.out.print (word.charAt(0)) ;
Eean el e pa st e VO e s ila L D =Nado nea B R
e e S B A PR e W e e Y U W e) G

}
Svstemont B aETa // end line

» Alternate solution: Either first or last "post" can be taken out:

publicistabtic vordiprinthcettcrs (SEring wordj i
o0 s s g A N i e hate AN Rl Rl R
Svstemyout prinbiiword.charAt (1) bty

}
StV s e bR e e e B RS Se Tl Ay AV Rl

System.out.println(word.charAt(last)); // end line

e
Fencepost question

e Write a method printPrimes that prints all prime numbers
up to a max.

e Example: printPrimes (50) prints
o b R e Sle ol doeh ol cul o Slv s il e e

o If the maximum is less than 2, print no output.

* To help you, write a method countFactors which returns

the number of factors of a given integer.
e countFactors (20) returns 6 due to factors 1, 2, 4, 5, 10, 20.

e e
Fencepost answer

// Prints all prime numbers up to the given max.
AN SR AN N A o R U O B A S SR RV S B R i S A R el S
Tftmas =yt
System.out.print ("2");

Forvilrn sy es e
if (countFactors (i) == 2) {
Sy e fenmioit ipE IR g

}

}
System.out.println();

}

// Returns how many factors the given number has.
publiresstatiovintreonntracEorsitintrnumbar)y

ki o M mEA eA @ A ol sean e b
e T
FEtmamber s rd e Dy
count++; // i is a factor of number

}
}

return count;

10

/-/?

while loops

reading: 5.1

g

e
Categories of loops

» definite loop: Executes a known number of times.
« The for loops we have seen are definite loops.

« Print "hello" 10 times.
- Find all the prime numbers up to an integer n.
« Print each odd number between 5 and 127.

* indefinite loop: One where the number of times its body
repeats is not known in advance.

« Prompt the user until they type a non-negative number.
« Print random numbers until a prime number is printed.

« Repeat until the user has typed "q" to quit.

1

//

The while loop

» while loop: Repeatedly executes its
body as long as a logical test is true.

while (fest) {
statement(s);

}

* Example:

i gty eubbagl 0 L // initialization

while (num <= 200) { // test
System.out.print (num + " ");
FRRIT I = E b T e e // update

}
// output: 1 2 4 8 16 32 64 128

5L

”;ggﬁ%ﬁff’:,——
Example while loop

// finds the first factor of 91, other than 1
T

bl factor =02
while (n % factor '= 0) {
factor++;
}
Svichmie vt e b s enl sn s b pi s e RN e S S e e e e R P D el e e

Ll outputs Firet factor 18 7

» while is better than for because we don't know how many
times we will need to increment to find the factor.

14

//

.

Sentinel values

* sentinel: A value that signals the end of user input.
» sentinel loop: Repeats until a sentinel value is seen.

e Example: Write a program that prompts the user for text
until the user types "quit", then output the total number of

characters typed.

e (In this case, "quit" is the sentinel value.)

Type a word (or "quit"
TVpe e wotd s toriiongiih
Tvpeia word “lor Yauloh
Youvbypedvavtbobalvolb @8

to exit): hello
to exit): yay
toiexitr s aguit
characters.

1

Solution?

Scanner console = new Scanner (System.in);
3t 0 RuRiRShbh o) e e B
String response = "dummy"; // "dummy" value, anything but "quit"
while (!response.equals ("quit")) {
System.out.print ("Type a word (or \"quit\" to exit): ");
response = console.next ()

sum += response.length ()

}

S YA I A e N R S Ui o Bl At SRS B e AT D e WA U B S I S L R U S SR T Dt i s A

* This solution produces the wrong output. Why?
You typediaitobtaly of @2 charactersy

16

//

_—

The problem with our code

e Our code uses a pattern like this:
sum = 0.
while (input is not the sentinel) {
prompt for input; read input.
add input length to the sum.
’

* On the last pass, the sentinel’ s length (4) is added to the
sum:

prompt for input; read input ("quit").
add input length (4) to the sum.

e This is a fencepost problem.
» Must read N lines, but only sum the lengths of the first N-1.

i1

//

———————————

A fencepost solution

sum = 0.
prompt for input; read input. // place a "post”

while (input is not the sentinel) {
add input length to the sum. // place a "wire"
prompt for input; read input. // place a "post”

U

e Sentinel loops often utilize a fencepost "loop-and-a-half"
style solution by pulling some code out of the loop.

18

e e
Correct code

Scanner console = new Scanner (System.in) ;
AR A S A S

// pull one prompt/read ("post") out of the loop
System.out.print ("Type a word (or \"quit\" to exit): ");
String response = console.next();

A R e N R e e R T A S i
sum += response.length() ; // moved to top of loop
Sy stemrouryprintith typearwordiifor ittt eiiaseiiy iy
response = console.next ()

}

System.out.println("You typed a total of " + sum + " characters.");

RS

;’ﬁffﬁﬁﬂff’*’ﬂﬂ———i -
Sentinel as a constant

public static final String SENTINEL = "quit";

Scanner console = new Scanner (System.in);

S R A

// pull one prompt/read ("post") out of the loop
System.out.print ("Type a word (or \"" + SENTINEL + "\" to exit): ");

String response = console.next();

while (!response.equals (SENTINEL)) ({

sum += response.length () ; // moved to top of loop
Sy stemcontiprintitt Typaera wordifor ot SENT ENEL b aaseir e oy
S AV e e e e R N U N S

}

Sy SrensoubrprintintroiEvped varioral ot harreimae e haieac peraaa s

20

//

e

Logical assertions

o assertion: A statement that is either true or false.

Examples:

» Java was created in 1995.

The sky is purple.

23 is a prime number.

10 is greater than 20.

x divided by 2 equals 7. (depends on the value of x)

* An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

21

/

—_———

Reasoning about assertions

e Suppose you have the following code:

SRR b M]
// Point A
i

} else {

// Point B
D7 G i o
// Point C

}
// Point D

e What do you know about x's value at the three points?
e Isx > 3? Always? Sometimes? Never?

22

’,;ﬁgﬁ%ﬁfff:/——
Assertions in code

» We can make assertions about our code and ask whether they
are true at various points in the code.

» Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print ("Type a nonnegative number: ");
double number = console.nextDouble() ;
// Point A: is number < 0.0 here? (SOMETIMES)

e e e e e
// Point B: is number < 0.0 here? (ALWAYS)

e e R e e R e R

number = console.nextDouble () ;
// Point C: is number < 0.0 here? (SOMETIMES)

}

// Point D: is number < 0.0 here? (NEVER)

23

‘/;gﬁ%/ff’i/~—
Reasoning about assertions

e Right after a variable is initialized, its value is known:
FATEse =S
// is x > 0? ALWAYS

e In general you know nothing about parameters' values:
pubiascsrs e re i e e e
// is a == 10? SOMETIMES

e But inside an if, while, etc., you may know something:
public static void mystery(int a, 1int b) {
Fivabar v
// is a == 10? NEVER

24

——ee

Assertions and loops

» At the start of a loop's body, the loop's test must be true:
el e e
[/ is 'y < 102 ALWAYS

}

o After a loop, the loop's test must be false:
while (y < 10) {

}
// is y < 10? NEVER

* Inside a loop's body, the loop's test may become false:
while (y < 10) {
e
// is y < 10? SOMETIMES

25

//

—_—

"Sometimes"”

* Things that cause a variable's value to be unknown
(often leads to "sometimes" answers):

e reading from a Scanner
» reading a number from a Random object

* a parameter's initial value to a method

e If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

o If you're unsure, "Sometimes" is a good guess.

26

//

Assertion example 1

O e R O e A e O S
S B
// Point A
Whieriae =i : . :
// Point B Which of the following assertions are
XSy true at which point(s) in the code?
z++; Choose ALWAYS, NEVER, or SOMETIMES.
SR e
// Point C Ry Ky G
} B e Point A | SOMETIMES | SOMETIMES | ALWAYS
Point B | NEVER SOMETIMES | SOMETIMES
// Point D ;
Point C | SOMETIMES | NEVER NEVER
}
Point D | SOMETIMES | SOMETIMES | NEVER
// Point E Point E | ALWAYS NEVER SOMETIMES
System.out.println(z);

3

