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CSE 142, Summer 2012 
Programming Assignment #4: Grades (20 points)  

Due Tuesday, July 17, 2012, 11:00 PM 

This interactive program focuses on if/else statements, Scanner, and returning values.  Turn in a file named 

Grades.java.  To use a Scanner for console input, you must import java.util.*; in your code.  The program 

reads as input a student's grades on homework and two exams and uses them to compute the student's course grade. 

Below is one example log of execution from the program.  This program behaves differently depending on the user input; 

user input is bold and underlined below.  Your output should match our examples exactly given the same input.  (Be 

mindful of spacing, such as after input prompts and between output sections.)  Look at the other example logs on the 

course web site and on the next page to get more examples of the program's behavior. 

The program begins with an introduction message that briefly 

explains the program.  The program then reads scores in three 

categories: homework and two exams.  Each category is 

weighted; its points are scaled up to a fraction of the 100 

percent grade for the course.  As the program begins reading 

each category, it first prompts for the category's weight. 

The user begins by entering scores earned on an exam.  The 

program asks whether the exam was curved, interpreting an 

answer of 1 to mean “yes” and 2 to mean “no.”  If there is a 

curve, the program prompts for the curve amount, and the 

curve is added to the user's exam score.  Exam scores are 

capped at a max of 100; for example, if the user got 95 and 

there was a curve of 10, the score to use would be 100.  The 

exam's “weighted score” is printed, which is equal to the 

user's score multiplied by the exam's weight. 

Next the program prompts for data about a second exam.  

This behavior is the same as the behavior for the first exam. 

Next the user enters information about his/her homework, 

including the weight and how many assignments were given.  

For each assignment, the user enters a score and points 

possible.  Use a cumulative sum as in textbook section 4.2. 

Part of the homework score comes from sections attended.  We will simplify the formula to assume that each section 

attended is worth 3 points, up to a maximum of 20 points. 

Once the program has read the user information for both exams and homework, it prints the student's overall percentage 

earned in the course, which is the sum of the weighted scores from the three categories, as shown below: 
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The program prints a loose guarantee about a minimum grade on the 4.0-scale the student will get in the course, based on 

the following scale.  See the logs of execution on the course web site to see the expected output for each grade range. 

85% and above: 3.0; 84.99% - 75%: 2.0; 74.99% - 60%: at least 0.7; under 60%: 0.0 

After printing the guaranteed minimum grade, print a custom message of your choice about the grade.  This message 

should be different for each grade range shown above.  It should be at least 1 line of any non-offensive text you like. 

This program reads exam/homework scores 
and reports your overall course grade. 
 
Exam 1:  
What is its weight (0-100)? 20  
Score earned? 78  
Was there a curve (1=yes, 2=no)? 2  
Total points = 78 / 100  
Weighted score = 15.6 / 20  
 
Exam 2:  
What is its weight (0-100)? 30  
Score earned? 95  
Was there a curve (1=yes, 2=no)? 1  
How much was the curve? 10  
Total points = 100 / 100  
Weighted score = 30.0 / 30  
 
Homework:  
What is its weight (0-100)? 50  
Number of assignments? 3  
Assignment 1 score and max? 14 15 
Assignment 2 score and max? 17 20 
Assignment 3 score and max? 19 25 
How many sections did you attend? 5  
Section points = 15 / 20  
Total points = 65 / 80  
Weighted score = 40.6 / 50  
 
Overall percentage = 86.2  
Your grade will be at least: 3.0 
<< your custom grade message here >> 
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This program processes user input using a Scanner.  You should handle the following two special cases of input: 

 A student can receive extra credit on an assignment; for example, 22 / 20 is a legal score.  But the total homework 

points are capped at the max possible.  For example, if a student receives 63 / 60 total, cap this to 60 / 60. 

 Cap exam scores at 100.  If the raw or curved exam score exceeds 100, a score of 100 is used. 

Otherwise, you may assume the user enters valid input.  When prompted for a value, the user will enter an integer, and 

one in a proper range.  The user will enter a number of homework assignments ≥ 1, and the sum of the three weights will 

be exactly 100.  The weight of each category will be a non-negative number.  Curves will be ≥ 0. 

Development Strategy and Hints: 

 Tackle parts of the program (midterm, homework, final exam) one at a time, rather than writing the entire 

program at once.  Write a bit of code, get it to compile, and test what you have so far.  If you try to write large 

amounts of code without attempting to compile it, you may encounter a large list of compiler errors and/or bugs. 

 To compute homework scores, you will need to cumulatively sum not only the total points the student has earned, 

but also the total points possible on all homework assignments.  See textbook section 4.2 about cumulative sums. 

 The homework part reads two values on one line from the Scanner.  See the lecture slides for an example of this. 

 Many students get "cannot find symbol" compiler errors.  Common mistakes include forgetting to pass / return a 

needed value, forgetting to store a returned value into a variable, and referring to a variable by the wrong name. 

 All weighted scores and grades are printed by the program with no more than 1 digit after the decimal point.  

Achieve this with System.out.printf.  The following code prints variable x rounded to the nearest tenth: 

double x = 1.2345; 

System.out.printf("x is around %.1f in size.\n", x);  // 1.2 

 If you are getting scores of 0 regardless of what data the user types, you may have a problem with integer 

division.  See Chapter 2 about types int and double, type-casting, and how to avoid integer division problems.  

If you have a value of type double but need to convert it into an int, use a type-cast such as the following: 

double d = 5.678; 

int i = (int) d;   // 5 

 Use Math.max and Math.min to constrain numbers to within a particular bound. 

Style Guidelines: 
For this assignment you are limited to Java features from Ch. 1-4.  A major part of this assignment is demonstrating that 

you understand parameters and return values.  Use static methods, parameters, and returns for structure and to eliminate 

redundancy.  For full credit, use at least 4 non-trivial methods other than main.  For reference, our solution is roughly 

110 lines long (66 “substantive”), with 6 methods other than main, though you do not need to match this. 

Like on previous assignments, you should not have println statements in your main method.  Also, main should be a 

concise summary of the overall program; main should make calls to several of your other methods that implement the 

majority of the program's behavior.  Your methods will need to make appropriate use of parameters and return values.  

Each method should perform a coherent task and should not do too large a share of the overall work.  Avoid lengthy 

“chaining” of method calls, where each method calls the next, no values are returned, and control does not come back to 

main.  (See textbook Chapter 4's case study for a discussion of well-designed versus poorly designed methods.) 

This document describes several numbers that are important to the overall program.  For full credit, you should make at 

least one of such numbers into a class constant so that the constant could be changed and your program would adapt. 

When handling numeric data, you are expected to choose appropriately between types int and double.  For example, 

you will lose points if you use type double for variables in cases where type int would be more appropriate. 

Some of your code will use conditional execution with if and if/else statements.  Part of your grade will come from 

using these statements properly.  Review book sections 4.1-4.3 about nested if/else statements and factoring them.   
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Give meaningful names to methods and variables, and use proper indentation and whitespace.  Follow Java's naming 

standards as specified in Chapter 1.  Localize variables when possible; declare them in the smallest scope needed.  Include 

meaningful comment headers at the top of your program and at the start of each method.  Limit line lengths to 100 chars. 


