
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-3: Encapsulation, this

reading: 8.5 - 8.6
self-checks: #13-17

exercises: #5

Copyright 2008 by Pearson Education
2

Abstraction

Don't need
to know
this

Can focus
on this!!

Copyright 2008 by Pearson Education
3

Encapsulation
�  encapsulation: Hiding implementation details of an

object from its clients.

�  Encapsulation provides abstraction.
�  separates external view (behavior) from internal view (state)

�  Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
4

Private fields
�  A field can be declared private.

�  No code outside the class can access or change it.

 private type name;

�  Examples:

 private int id;
 private String name;

�  Client code sees an error when accessing private fields:
PointMain.java:11: x has private access in Point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
 ^

Copyright 2008 by Pearson Education
5

Accessing private state
�  We can provide methods to get and/or set a field's value:

 // A "read-only" access to the x field ("accessor")
 public int getX() {
 return x;
 }

 // Allows clients to change the x field ("mutator")
 public void setX(int newX) {
 x = newX;
 }

�  Client code will look more like this:

 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
 p1.setX(14);

Copyright 2008 by Pearson Education
6

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {
 private int x;
 private int y;

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Copyright 2008 by Pearson Education
7

Client code, version 4
public class PointMain4 {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point(5, 2);
 Point p2 = new Point(4, 3);

 // print each point
 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

 // move p2 and then print it again
 p2.translate(2, 4);
 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");
 }
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

Copyright 2008 by Pearson Education
8

Benefits of encapsulation
�  Provides abstraction between an object and its clients.

�  Protects an object from unwanted access by clients.
�  A bank app forbids a client to change an Account's balance.

�  Allows you to change the class implementation.
�  Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

�  Allows you to constrain objects' state (invariants).
�  Example: Only allow Points with non-negative coordinates.

Copyright 2008 by Pearson Education

Inheritance

reading: 9.1

Copyright 2008 by Pearson Education
10

The software crisis
�  software engineering: The practice of developing,

designing, documenting, testing large computer programs.

�  Large-scale projects face many issues:
�  programmers working together
�  getting code finished on time
�  avoiding redundant code
�  finding and fixing bugs
�  maintaining, reusing existing code

�  code reuse: The practice of writing program code once
and using it in many contexts.

Copyright 2008 by Pearson Education
11

Law firm employee analogy
�  common rules: hours, vacation, benefits, regulations ...

�  all employees attend a common orientation to learn general
company rules

�  each employee receives a 20-page manual of common rules

�  each subdivision also has specific rules:
�  employee receives a smaller (1-3 page) manual of these rules
�  smaller manual adds some new rules and also changes some

rules from the large manual

Copyright 2008 by Pearson Education
12

Separating behavior
�  Why not just have a 22 page Lawyer manual, a 21-page

Secretary manual, a 23-page Marketer manual, etc.?

�  Some advantages of the separate manuals:
�  maintenance: Only one update if a common rule changes.
�  locality: Quick discovery of all rules specific to lawyers.

�  Some key ideas from this example:
�  General rules are useful (the 20-page manual).
�  Specific rules that may override general ones are also useful.

Copyright 2008 by Pearson Education
13

Is-a relationships, hierarchies
�  is-a relationship: A hierarchical connection where one

category can be treated as a specialized version of another.
�  every marketer is an employee
�  every legal secretary is a secretary

�  inheritance hierarchy: A set of classes connected by is-a
relationships that can share common code.

Copyright 2008 by Pearson Education
14

Employee regulations
�  Consider the following employee regulations:

�  Employees work 40 hours / week.
�  Employees make $40,000 per year, except legal secretaries who

make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

�  Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

�  Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

�  Each type of employee has some unique behavior:

�  Lawyers know how to sue.
�  Marketers know how to advertise.
�  Secretaries know how to take dictation.
�  Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education
15

An Employee class
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

�  Exercise: Implement class Secretary, based on the previous
employee regulations. (Secretaries can take dictation.)

Copyright 2008 by Pearson Education
16

Redundant Secretary class
// A redundant class to represent secretaries.
public class Secretary {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2008 by Pearson Education
17

Desire for code-sharing
�  takeDictation is the only unique behavior in Secretary.

�  We'd like to be able to say:

// A class to represent secretaries.
public class Secretary {
 copy all the contents from the Employee class;

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2008 by Pearson Education
18

Inheritance
�  inheritance: A way to form new classes based on existing

classes, taking on their attributes/behavior.
�  a way to group related classes
�  a way to share code between two or more classes

�  One class can extend another, absorbing its data/behavior.
�  superclass: The parent class that is being extended.
�  subclass: The child class that extends the superclass and

inherits its behavior.
�  Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education
19

Inheritance syntax
 public class name extends superclass {

�  Example:

 public class Secretary extends Employee {
 ...

 }

�  By extending Employee, each Secretary object now:
�  receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

�  can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education
20

Improved Secretary code
// A class to represent secretaries.
public class Secretary extends Employee {
 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

�  Now we only write the parts unique to each type.
�  Secretary inherits getHours, getSalary, getVacationDays,

and getVacationForm methods from Employee.
�  Secretary adds the takeDictation method.

Copyright 2008 by Pearson Education
21

Implementing Lawyer
�  Consider the following lawyer regulations:

�  Lawyers who get an extra week of paid vacation (a total of 3).
�  Lawyers use a pink form when applying for vacation leave.
�  Lawyers have some unique behavior: they know how to sue.

�  Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

Copyright 2008 by Pearson Education
22

Overriding methods
�  override: To write a new version of a method in a subclass

that replaces the superclass's version.
�  No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

 public class Lawyer extends Employee {
 // overrides getVacationForm method in Employee class
 public String getVacationForm() {
 return "pink";
 }
 ...
 }

�  Exercise: Complete the Lawyer class.
�  (3 weeks vacation, pink vacation form, can sue)

Copyright 2008 by Pearson Education
23

Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {
 // overrides getVacationForm from Employee class
 public String getVacationForm() {
 return "pink";
 }

 // overrides getVacationDays from Employee class
 public int getVacationDays() {
 return 15; // 3 weeks vacation
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

�  Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

Copyright 2008 by Pearson Education
24

Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }
}

Copyright 2008 by Pearson Education
25

Levels of inheritance
�  Multiple levels of inheritance in a hierarchy are allowed.

�  Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

 public class LegalSecretary extends Secretary {
 ...

 }

�  Exercise: Complete the LegalSecretary class.

Copyright 2008 by Pearson Education
26

LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
 public void fileLegalBriefs() {
 System.out.println("I could file all day!");
 }

 public double getSalary() {
 return 45000.0; // $45,000.00 / year
 }
}

