
1

Building Java Programs
Chapter 5

Lecture 5-3: Assertions, boolean Logic

reading: 5.5, 5.3, 5.4

2

3

While loop mystery
�  For each call below to the following method, write the

output that is produced, as it would appear on the console:

public static void mystery(int x, int y) {
 int z = 1;
 while (x > 0) {
 System.out.print(y + ", ");
 y = y - z;
 z = z + y;
 x--;
 }
 System.out.println(y);
}

mystery(2, 3);

mystery(3, 5);

mystery(4, 7);

4

Logical assertions
�  assertion: A statement that is either true or false.

Examples:
�  Java was created in 1995.
�  The sky is purple.
�  23 is a prime number.
�  10 is greater than 20.
�  x divided by 2 equals 7. (depends on the value of x)

�  An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

5

Reasoning about assertions
�  Suppose you have the following code:

 if (x > 3) {
 // Point A
 x--;
 } else {
 // Point B
 x++;
 // Point C
 }
 // Point D

�  What do you know about x's value at the three points?
�  Is x > 3? Always? Sometimes? Never?

6

Assertions in code
�  We can make assertions about our code and ask whether they

are true at various points in the code.
�  Valid answers are ALWAYS, NEVER, or SOMETIMES.

 System.out.print("Type a nonnegative number: ");
 double number = console.nextDouble();
 // Point A: is number < 0.0 here?

 while (number < 0.0) {
 // Point B: is number < 0.0 here?
 System.out.print("Negative; try again: ");

 number = console.nextDouble();
 // Point C: is number < 0.0 here?
 }

 // Point D: is number < 0.0 here?

(SOMETIMES)

(ALWAYS)

(SOMETIMES)

(NEVER)

7

Reasoning about assertions
�  Right after a variable is initialized, its value is known:

 int x = 3;
 // is x > 0? ALWAYS

�  In general you know nothing about parameters' values:
 public static void mystery(int a, int b) {
 // is a == 10? SOMETIMES

�  But inside an if, while, etc., you may know something:
 public static void mystery(int a, int b) {
 if (a < 0) {
 // is a == 10? NEVER
 ...
 }
 }

8

Assertions and loops
�  At the start of a loop's body, the loop's test must be true:

 while (y < 10) {
 // is y < 10? ALWAYS
 ...
 }

�  After a loop, the loop's test must be false:
 while (y < 10) {
 ...
 }
 // is y < 10? NEVER

�  Inside a loop's body, the loop's test may become false:
 while (y < 10) {
 y++;
 // is y < 10? SOMETIMES
 }

9

"Sometimes"
�  Things that cause a variable's value to be unknown

(often leads to "sometimes" answers):

�  reading from a Scanner
�  reading a number from a Random object
�  a parameter's initial value to a method

�  If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

�  If you're unsure, "Sometimes" is a good guess.

10

Assertion example 1
public static void mystery(int x, int y) {
 int z = 0;

 // Point A

 while (x >= y) {
 // Point B
 x = x - y;
 z++;

 if (x != y) {
 // Point C
 z = z * 2;
 }

 // Point D

 }

 // Point E
 System.out.println(z);
}

x < y x == y z == 0

Point A

Point B

Point C

Point D

Point E

SOMETIMES SOMETIMES ALWAYS

NEVER SOMETIMES SOMETIMES

SOMETIMES NEVER NEVER

SOMETIMES SOMETIMES NEVER

ALWAYS NEVER SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

boolean logic

reading: 5.5

12

Type boolean
�  boolean: A logical type whose values are true and false.

�  A logical test is actually a boolean expression.

�  Like other types, it is legal to:
�  create a boolean variable
�  pass a boolean value as a parameter
�  return a boolean value from methods
�  call a method that returns a boolean and use it as a test

 boolean minor = age < 21;
 boolean isProf = name.contains("Prof");
 boolean lovesCSE = true;

 // allow only CSE-loving students over 21
 if (minor || isProf || !lovesCSE) {
 System.out.println("Can't enter the club!");
 }

13

Using boolean
�  Why is type boolean useful?

�  Can capture a complex logical test result and use it later
�  Can write a method that does a complex test and returns it
�  Makes code more readable
�  Can pass around the result of a logical test (as param/return)

boolean goodAge = age >= 12 && age < 29;
boolean goodHeight = height >= 78 && height < 84;
boolean rich = salary >= 100000.0;

if ((goodAge && goodHeight) || rich) {
 System.out.println("Okay, let's go out!");
} else {
 System.out.println("It's not you, it's me...");
}

14

Returning boolean
public static boolean isPrime(int n) {
 int factors = 0;
 for (int i = 1; i <= n; i++) {
 if (n % i == 0) {
 factors++;
 }
 }

 if (factors == 2) {
 return true;
 } else {
 return false;
 }
}

�  Calls to methods returning boolean can be used as tests:

if (isPrime(57)) {
 ...
}

15

"Boolean Zen", part 1
�  Students new to boolean often test if a result is true:

if (isPrime(57) == true) { // bad
 ...
}

�  But this is unnecessary and redundant. Preferred:

if (isPrime(57)) { // good
 ...
}

�  A similar pattern can be used for a false test:

if (isPrime(57) == false) { // bad
if (!isPrime(57)) { // good

16

"Boolean Zen", part 2
�  Methods that return boolean often have an
if/else that returns true or false:

 public static boolean bothOdd(int n1, int n2) {
 if (n1 % 2 != 0 && n2 % 2 != 0) {
 return true;
 } else {
 return false;
 }
 }

�  But the code above is unnecessarily verbose.

17

Solution w/ boolean variable
� We could store the result of the logical test.

 public static boolean bothOdd(int n1, int n2) {
 boolean test = (n1 % 2 != 0 && n2 % 2 != 0);
 if (test) { // test == true
 return true;
 } else { // test == false
 return false;
 }
 }

�  Notice: Whatever test is, we want to return that.
�  If test is true , we want to return true.
�  If test is false, we want to return false.

18

Solution w/ "Boolean Zen"
�  Observation: The if/else is unnecessary.

�  The variable test stores a boolean value;
its value is exactly what you want to return. So return that!

 public static boolean bothOdd(int n1, int n2) {
 boolean test = (n1 % 2 != 0 && n2 % 2 != 0);
 return test;
 }

�  An even shorter version:
�  We don't even need the variable test.

We can just perform the test and return its result in one step.

 public static boolean bothOdd(int n1, int n2) {
 return (n1 % 2 != 0 && n2 % 2 != 0);
 }

19

"Boolean Zen" template
�  Replace

public static boolean name(parameters) {
 if (test) {
 return true;
 } else {
 return false;
 }
}

•  with

public static boolean name(parameters) {
 return test;
}

20

Improved isPrime method
�  The following version utilizes Boolean Zen:

public static boolean isPrime(int n) {
 int factors = 0;
 for (int i = 1; i <= n; i++) {
 if (n % i == 0) {
 factors++;
 }
 }
 return factors == 2; // if n has 2 factors -> true
}

21

De Morgan's Law
�  De Morgan's Law: Rules used to negate boolean tests.

�  Useful when you want the opposite of an existing test.

�  Example:

Original Expression Negated Expression Alternative
a && b !a || !b !(a && b)
a || b !a && !b !(a || b)

Original Code Negated Code
if (x == 7 && y > 3) {
 ...
}

if (x != 7 || y <= 3) {
 ...
}

22

Boolean practice questions
�  Write a method named isVowel that returns whether a
String is a vowel (a, e, i, o, or u), case-insensitively.
�  isVowel("q") returns false
�  isVowel("A") returns true
�  isVowel("e") returns true

�  Change the above method into an isNonVowel that returns
whether a String is any character except a vowel.
�  isNonVowel("q") returns true
�  isNonVowel("A") returns false
�  isNonVowel("e") returns false

23

Boolean practice answers
// Enlightened version. I have seen the true way (and false way)
public static boolean isVowel(String s) {
 return s.equalsIgnoreCase("a") || s.equalsIgnoreCase("e") ||
 s.equalsIgnoreCase("i") || s.equalsIgnoreCase("o") ||
 s.equalsIgnoreCase("u");
}

// Enlightened "Boolean Zen" version
public static boolean isNonVowel(String s) {
 return !s.equalsIgnoreCase("a") && !s.equalsIgnoreCase("e") &&
 !s.equalsIgnoreCase("i") && !s.equalsIgnoreCase("o") &&
 !s.equalsIgnoreCase("u");

 // or, return !isVowel(s);
}

24

When to return?
�  Methods with loops and return values can be tricky.

�  When and where should the method return its result?

�  Write a method hasVowel that accepts a String parameter
and that returns true if the String contains at least one
vowel. Return false otherwise.

25

Flawed solution
// Returns true if s contains at least 1 vowel.
public static boolean hasVowel(String s) {
 for (int i = 0; i < s.length(); i++) {

 if (isVowel(s.charAt(i))) {
 return true;
 } else {
 return false;
 }
 }
}

�  The method always returns immediately after the first letter!
�  If the first letter is not a vowel but the rest of the word

contains a vowel, the result is wrong.

26

Returning at the right time
// Returns true if s contains at least 1 vowel.
public static boolean hasVowel(String s) {
 for (int i = 0; i < s.length(); i++) {

 if (isVowel(s.charAt(i))) { // found vowel - exit
 return true;
 }
 }
 return false; // if we get here, there was no vowel
}

�  Returns true immediately if vowel is found.
�  If vowel isn't found, the loop continues walking the string.
�  If no character is a vowel, the loop ends and we return false.

