
CSE 142, Autumn 2010
Midterm Exam, Friday, November 5, 2010

Name: __

Section: ___________________ TA: ___________________

Student ID #: ___________________

• You have 50 minutes to complete this exam.
You may receive a deduction if you keep working after the instructor calls for papers.

• This exam is open-book/notes. You may not use any calculators or other computing devices.
• Code will be graded on proper behavior/output and not on style, unless otherwise indicated.
• Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks.

The only abbreviations that are allowed for this exam are:
 S.o.p for System.out.print,

 S.o.pln for System.out.println, and

 S.o.pf for System.out.printf.

• You do not need to write import statements in your code.
• If you enter the room, you must turn in an exam before leaving the room.
• You must show your Student ID to a TA or instructor for your exam to be accepted.

Good luck!

Score summary: (for grader only)

Problem Description Earned Max
1 Expressions 10
2 Parameter Mystery 15
3 If/Else Simulation 10
4 While Loop Simulation 10
5 Assertions 15
6 Programming 15
7 Programming 15
8 Programming 10

TOTAL Total Points 100

1 of 9

1. Expressions
For each expression at left, indicate its value in the right column. List a value of appropriate type and capitalization.
e.g., 7 for an int, 7.0 for a double, "hello" for a String, true or false for a boolean.

Expression Value

12 / 3 + 5 + 3 * -2

1 + 1 + "(1 + 1)" + 1 + 1

13 / 2 - 38 / 5 / 2.0 + (15 / 10.0)

11 < 3 + 4 || !(5 / 2 == 2)

20 % 6 + 6 % 20 + 6 % 6

2. Parameter Mystery
At the bottom of the page, write the output produced by the following program, as it would appear on the console.

public class ParameterMystery {
 public static void main(String[] args) {
 int a = 5;
 int b = 1;
 int c = 3;
 int three = a;
 int one = b + 1;

 axiom(a, b, c);
 axiom(c, three, 10);
 axiom(b + c, one + three, a + one);
 a++;
 b = 0;
 axiom(three, 2, one);
 }

 public static void axiom(int c, int b, int a) {
 System.out.println(a + " + " + c + " = " + b);
 }
}

2 of 9

3. If/Else Simulation
For each call below to the following method, write the output that is produced, as it would appear on the console:

public static void ifElseMystery(int x, int y) {
 if (x == y) {
 x = x + 11;
 } else if (x > 2 * y) {
 x = 0;
 }
 if (x == 0 || y > x) {
 x = x + 2;
 y = y + 2;
 }

 System.out.println(x + " " + y);
}

Method Call Output

ifElseMystery(5, 5);

ifElseMystery(18, 4);

ifElseMystery(3, 6);

__

__

__

3 of 9

4. While Loop Simulation
For each call below to the following method, write the output that is produced, as it would appear on the console:

public static void whileMystery(int x, int y) {
 while (x > 0 && y > 0) {
 x = x - y;
 y--;
 System.out.print(x + " ");
 }

 System.out.println(y);
}

Method Call Output

whileMystery(7, 5);

whileMystery(20, 4);

whileMystery(40, 10);

__

__

__

4 of 9

5. Assertions
For each of the five points labeled by comments, identify each of the assertions in the table below as either being
always true, never true, or sometimes true / sometimes false. (You may abbreviate them as A, N, or S.)

public static int stuff(Random r, int m) {
 int c = 0;
 int t = 0;
 int d = r.nextInt(m);

 // Point A

 while (c <= 3) {
 // Point B

 d = r.nextInt(6) + 1;
 if (d <= m) {
 c++;
 // Point C

 } else {
 c = 0;
 // Point D

 }
 t++;
 }

 // Point E

 return t;
}

c > 3 d <= m c == 0

Point A

Point B

Point C

Point D

Point E

5 of 9

6. Programming
Write a static method named xo that accepts an integer size as a parameter and prints a square of size by size
characters, where all characters are "o" except that an "x" pattern of "x" characters has been drawn from the corners of
the square. In other words, on the first line, the first and last characters are "x"; on the second line, the second and
second-from-last characters are "x"; and so on. If 0 or less is passed for the size, no output should be produced.

The following table lists some calls to your method and their expected output:

Call xo(5); xo(8); xo(3); xo(1); xo(0); xo(12); xo(11);

Example
Output

xooox
oxoxo
ooxoo
oxoxo
xooox

xoooooox
oxooooxo
ooxooxoo
oooxxooo
oooxxooo
ooxooxoo
oxooooxo
xoooooox

xox
oxo
xox

x xoooooooooox
oxooooooooxo
ooxooooooxoo
oooxooooxooo
ooooxooxoooo
oooooxxooooo
oooooxxooooo
ooooxooxoooo
oooxooooxooo
ooxooooooxoo
oxooooooooxo
xoooooooooox

xooooooooox
oxoooooooxo
ooxoooooxoo
oooxoooxooo
ooooxoxoooo
oooooxooooo
ooooxoxoooo
oooxoooxooo
ooxoooooxoo
oxoooooooxo
xooooooooox

6 of 9

7. Programming
Write a static method named anglePairs that accepts three angles (integers), measured in degrees, as parameters
and returns whether or not there exists both complementary and supplementary angles amongst the three angles
passed. Two angles are complementary if their sum is exactly 90 degrees; two angles are supplementary if their sum
is exactly 180 degrees. Therefore, the method should return true if any two of the three angles add up to 90 degrees
and also any two of the three angles add up to 180 degrees; otherwise the method should return false. You may
assume that each angle passed is non-negative.

Here are some example calls to the method and their resulting return values.

Call Value Returned
anglePairs(0, 90, 180)
anglePairs(45, 135, 45)
anglePairs(177, 87, 3)
anglePairs(120, 60, 30)
anglePairs(35, 60, 30)
anglePairs(120, 60, 45)
anglePairs(45, 90, 45)
anglePairs(180, 45, 45)

true
true
true
true
false
false
false
false

7 of 9

8. Programming
Write a static method named baseball that takes a Scanner representing the console as a parameter and plays an
interactive baseball scoring game with the user, returning an integer representing which team won the game.

Baseball is a sport where teams play a series of innings against each other. Each team scores a certain number of runs
(points) in each inning. A baseball game ends when one of the following conditions is met:

• After 9 innings are finished, if one team has more total runs than the other, the team with more runs wins.
• After 9 innings are finished, if the teams are tied (if they have the same number of total runs), we keep playing

one more full inning at a time until the teams are not tied any more.
• After any inning, if one team is ahead by 10 or more runs, the game is called and the team with more runs wins.

Your method should repeatedly prompt the user, once per inning, to enter the number of runs that each team scored
during each inning. The user will type in the first team's runs for that inning, followed by the second team's runs for
that inning, separated by whitespace. Your method should stop prompting once one or more of the above bulleted
conditions are met, causing the game to end. At the end of the game, you should print the final score. You should
also return an integer for which team won: return 1 if the first team won, and 2 if the second team won.

You may assume that the user enters valid non-negative integers whenever prompted, and you may assume that the
game will eventually end (it won't go on forever).

Here are some example calls to the method and their resulting output and return values:

 Scanner console = new Scanner(System.in);

Call // typical game
baseball(console);

// 10 run limit; game called
baseball(console);

// extra innings
baseball(console);

Example
Output

Inning #1: 1 1
Inning #2: 0 0
Inning #3: 2 1
Inning #4: 0 2
Inning #5: 1 0
Inning #6: 1 1
Inning #7: 3 1
Inning #8: 0 0
Inning #9: 1 0
Final score: 9 - 6

Inning #1: 0 1
Inning #2: 1 2
Inning #3: 0 3
Inning #4: 1 1
Inning #5: 0 4
Inning #6: 1 2
Final score: 3 - 13

Inning #1: 0 1
Inning #2: 1 0
Inning #3: 0 3
Inning #4: 1 0
Inning #5: 2 0
Inning #6: 1 2
Inning #7: 1 0
Inning #8: 0 0
Inning #9: 1 1
Inning #10: 0 0
Inning #11: 0 1
Final score: 7 - 8

Returns 1 2 2

(More writing space can be found on the next page.)

8 of 9

8. Programming (writing space)

9 of 9

