
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 4
Lecture 4-2: Advanced if/else; Cumulative sum

reading: 4.2, 4.4 - 4.5

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education

Advanced if/else

reading: 4.4 - 4.5

Copyright 2010 by Pearson Education
4

Factoring if/else code
�  factoring: Extracting common/redundant code.

�  Can reduce or eliminate redundancy from if/else code.

�  Example:

if (a == 1) {
 System.out.println(a);
 x = 3;
 b = b + x;
} else if (a == 2) {
 System.out.println(a);
 x = 6;
 y = y + 10;
 b = b + x;
} else { // a == 3
 System.out.println(a);
 x = 9;
 b = b + x;
}

System.out.println(a);
x = 3 * a;
if (a == 2) {
 y = y + 10;
}
b = b + x;

Copyright 2010 by Pearson Education
5

The "dangling if" problem
�  What can be improved about the following code?

	

if (x < 0) {
 System.out.println("x is negative");
} else if (x >= 0) {
 System.out.println("x is non-negative");
}

�  The second if test is unnecessary and can be removed:
	

if (x < 0) {
 System.out.println("x is negative");
} else {
 System.out.println("x is non-negative");
}

�  This is also relevant in methods that use if	
 with return...

Copyright 2010 by Pearson Education
6

if/else with return
// Returns the larger of the two given integers.
public static int max(int a, int b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}

�  Methods can return different values using if/else
�  Whichever path the code enters, it will return that value.
�  Returning a value causes a method to immediately exit.
�  All paths through the code must reach a return statement.

Copyright 2010 by Pearson Education
7

All paths must return
public static int max(int a, int b) {
 if (a > b) {
 return a;
 }
 // Error: not all paths return a value
}

�  The following also does not compile:

public static int max(int a, int b) {
 if (a > b) {
 return a;
 } else if (b >= a) {
 return b;
 }
}

�  The compiler thinks if/else/if code might skip all paths,
even though mathematically it must choose one or the other.

Copyright 2010 by Pearson Education
8

Logical operators
�  Tests can be combined using logical operators:

�  "Truth tables" for each, used with logical values p and q:

Operator Description Example Result
&& and (2 == 3) && (-1 < 5) false

|| or (2 == 3) || (-1 < 5) true

! not !(2 == 3) true

p q p && q p || q
true true true true

true false false true

false true false true

false false false false

p !p
true false

false true

Copyright 2010 by Pearson Education
9

Evaluating logical expressions
�  Relational operators have lower precedence than math;

logical operators have lower precedence than relational
operators

5 * 7 >= 3 + 5 * (7 – 1) && 7 <= 11
5 * 7 >= 3 + 5 * 6 && 7 <= 11
35 >= 3 + 30 && 7 <= 11
35 >= 33 && 7 <= 11
true && true
true

�  Relational operators cannot be "chained" as in algebra

2 <= x <= 10
true <= 10 (assume that x is 15)
Error!

�  Instead, combine multiple tests with && or ||

2 <= x && x <= 10
true && false
false

Copyright 2010 by Pearson Education
10

Logical questions
�  What is the result of each of the following expressions?

 int x = 42;
 int y = 17;
 int z = 25;

�  y < x && y <= z
�  x % 2 == y % 2 || x % 2 == z % 2
�  x <= y + z && x >= y + z
�  !(x < y && x < z)
�  (x + y) % 2 == 0 || !((z - y) % 2 == 0)

�  Answers: true, false, true, true, false

Copyright 2010 by Pearson Education

Cumulative algorithms

reading: 4.2

Copyright 2010 by Pearson Education
12

Adding many numbers
�  How would you find the sum of all integers from 1-1000?

// This may require a lot of typing
int sum = 1 + 2 + 3 + 4 + ... ;
System.out.println("The sum is " + sum);

�  What if we want the sum from 1 - 1,000,000?
Or the sum up to any maximum?
�  How can we generalize the above code?

Copyright 2010 by Pearson Education
13

Cumulative sum loop
 int sum = 0;
 for (int i = 1; i <= 1000; i++) {
 sum = sum + i;
 }
 System.out.println("The sum is " + sum);

�  cumulative sum: A variable that keeps a sum in progress
and is updated repeatedly until summing is finished.

�  The sum in the above code is an attempt at a cumulative sum.

�  Cumulative sum variables must be declared outside the loops
that update them, so that they will still exist after the loop.

Copyright 2010 by Pearson Education
14

Cumulative product
�  This cumulative idea can be used with other operators:

int product = 1;
for (int i = 1; i <= 20; i++) {
 product = product * 2;
}
System.out.println("2 ^ 20 = " + product);

�  How would we make the base and exponent adjustable?

Copyright 2010 by Pearson Education
15

Scanner and cumulative sum
�  We can do a cumulative sum of user input:

 Scanner console = new Scanner(System.in);
 int sum = 0;
 for (int i = 1; i <= 100; i++) {
 System.out.print("Type a number: ");
 sum = sum + console.nextInt();
 }
 System.out.println("The sum is " + sum);

Copyright 2010 by Pearson Education
16

Cumulative sum question
�  Modify the Receipt program from Ch. 2.

�  Prompt for how many people, and each person's dinner cost.
�  Use static methods to structure the solution.

�  Example log of execution:

How many people ate? 4
Person #1: How much did your dinner cost? 20.00
Person #2: How much did your dinner cost? 15
Person #3: How much did your dinner cost? 30.0
Person #4: How much did your dinner cost? 10.00

Subtotal: $75.0
Tax: $6.0
Tip: $11.25
Total: $92.25

Copyright 2010 by Pearson Education
17

Cumulative sum answer
// This program enhances our Receipt program using a cumulative sum.
import java.util.*;

public class Receipt2 {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);
 double subtotal = meals(console);
 results(subtotal);
 }

 // Prompts for number of people and returns total meal subtotal.
 public static double meals(Scanner console) {
 System.out.print("How many people ate? ");
 int people = console.nextInt();
 double subtotal = 0.0; // cumulative sum

 for (int i = 1; i <= people; i++) {
 System.out.print("Person #" + i +
 ": How much did your dinner cost? ");
 double personCost = console.nextDouble();
 subtotal = subtotal + personCost; // add to sum
 }
 return subtotal;
 }
 ...

Copyright 2010 by Pearson Education
18

Cumulative answer, cont'd.
 ...

 // Calculates total owed, assuming 8% tax and 15% tip
 public static void results(double subtotal) {
 double tax = subtotal * .08;
 double tip = subtotal * .15;
 double total = subtotal + tax + tip;

 System.out.println("Subtotal: $" + subtotal);
 System.out.println("Tax: $" + tax);
 System.out.println("Tip: $" + tip);
 System.out.println("Total: $" + total);
 }
}

Copyright 2010 by Pearson Education
19

if/else, return question
�  Write a method countFactors that returns

the number of factors of an integer.
�  countFactors(24) returns 8 because

1, 2, 3, 4, 6, 8, 12, and 24 are factors of 24.

�  Solution:

// Returns how many factors the given number has.
public static int countFactors(int number) {
 int count = 0;
 for (int i = 1; i <= number; i++) {
 if (number % i == 0) {
 count++; // i is a factor of number
 }
 }
 return count;
}

