
Week 7

Lists

Special thanks to Roy McElmurry, John Kurkowski, Scott Shawcroft, Ryan Tucker, Paul Beck for their work.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

2

Lists

• list: Python's equivalent to Java's array (but cooler)

– Declaring:

name = [value, value, ..., value] or,

name = [value] * length

– Accessing/modifying elements: (same as Java)

name[index] = value

>>> scores = [9, 14, 18, 19, 16]
[9, 14, 18, 19, 16]

>>> counts = [0] * 4
[0, 0, 0, 0]

>>> scores[0] + scores[4]
25

3

Indexing

• Lists can be indexed using positive or negative numbers:

15247161912149value

index 0 1 2 3 4 5 6 7

index -8 -7 -6 -5 -4 -3 -2 -1

>>> scores = [9, 14, 12, 19, 16, 7, 24, 15]

[9, 14, 12, 19, 16, 7, 24, 15]

>>> scores[3]

19

>>> scores[-3]

7

4

Recall: Strings

• Accessing character(s):

variable [index]

variable [index1:index2]

– index2 exclusive

– index1 or index2 can be
omitted (goes to end of string)

-1-2-3-4-5-6-7-8-index

value

index 2

yddiD.P

7654310

>>> name = "P. Diddy"

>>> name[0]
'P'

>>> name[7]
'y'

>>> name[-1]
'y'

>>> name[3:6]
'Did'

>>> name[3:]
'Diddy'

>>> name[:-2]
'P. Did'

5

Slicing

• slice: A sub-list created by specifying start/end indexes
name[start:end] # end is exclusive

name[start:] # to end of list

name[:end] # from start of list

name[start:end:step] # every step'th value

>>> scores = [9, 14, 12, 19, 16, 18, 24, 15]

>>> scores[2:5]

[12, 19, 16]

>>> scores[3:]

[19, 16, 18, 24, 15]

>>> scores[:3]

[9, 14, 12]

>>> scores[-3:]

[18, 24, 15]
152418161912149value

index 0 1 2 3 4 5 6 7

index -8 -7 -6 -5 -4 -3 -2 -1

6

Other List Abilities

– Lists can be printed (or converted to string with str()).

– Find out a list's length by passing it to the len function.

– Loop over the elements of a list using a for ... in loop.

>>> scores = [9, 14, 18, 19]
>>> print("My scores are", scores)
My scores are [9, 14, 18, 19]

>>> len(scores)
4

>>> total = 0
>>> for score in scores:
... print("next score:", score)
... total += score
next score: 9

next score: 14

next score: 18

next score: 19

>>> total
60

7

Ranges, Strings, and Lists

• The range function returns a list.

• Strings behave like lists of characters:
– len

– indexing and slicing

– for ... in loops

>>> nums = range(5)

>>> nums

[0, 1, 2, 3, 4]

>>> nums[-2:]

[3, 4]

>>> len(nums)

5

8

String Splitting

• split breaks a string into a list of tokens.

name.split() # break by whitespace

name.split(delimiter) # break by delimiter

• join performs the opposite of a split

delimiter.join(list)

>>> name = "Brave Sir Robin"

>>> name[-5:]

'Robin'

>>> tokens = name.split()

['Brave', 'Sir', 'Robin']

>>> name.split("r")

['B', 'ave Si', ' Robin']

>>> "||".join(tokens)

'Brave||Sir||Robin'

9

Tokenizing File Input

• Use split to tokenize line contents when reading files.

– You may want to type-cast tokens: type(value)

>>> f = open("example.txt")

>>> line = f.readline()

>>> line

'hello world 42 3.14\n'

>>> tokens = line.split()

>>> tokens

['hello', 'world', '42', '3.14']

>>> word = tokens[0]

'hello'

>>> answer = int(tokens[2])

42

>>> pi = float(tokens[3])

3.14

10

Exercise

• Recall hours.txt. Suppose the # of days can
vary:

123 Susan 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Jenn 8.0 8.0 8.0 8.0 7.5

• Compute each worker's total hours and hours/day.
– Should work no matter how many days a person works.

Suzy ID 123 worked 31.4 hours: 6.3 / day

Brad ID 456 worked 36.8 hours: 7.36 / day

Jenn ID 789 worked 39.5 hours: 7.9 / day

11

Exercise Answer

file = open("hours.txt")
for line in file:

tokens = line.split()
id = tokens[0]
name = tokens[1]

cumulative sum of this employee's hours
hours = 0.0
days = 0
for token in tokens[2:]:

hours += float(token)
days += 1

print(name, "ID", id, "worked", \
hours, "hours:", hours / days, "/ day")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

hours.py

12

Exercise

• Suppose we have a file of midterm scores, scores.txt:

76

89

76

72

68

• Create a histogram of the scores as follows:

75: *

76: *****

79: **

81: ********

82: ******

84: ***********

13

Exercise

• Suppose we have Internet Movie Database (IMDb) data:

1 9.1 196376 The Shawshank Redemption (1994)

2 9.0 139085 The Godfather: Part II (1974)

3 8.8 81507 Casablanca (1942)

• Write a program to search for all films with a given phrase:

Search word? part

Rank Votes Rating Title

2 139085 9.0 The Godfather: Part II (1974)

40 129172 8.5 The Departed (2006)

95 20401 8.2 The Apartment (1960)

192 30587 8.0 Spartacus (1960)

4 matches.

14

Exercise Answer

search_word = input("Search word? ")
matches = 0
file = open("imdb.txt")
for line in file:

tokens = line.split()
rank = int(tokens[0])
rating = float(tokens[1])
votes = int(tokens[2])
title = " ".join(tokens[3:])

does title contain search_word?
if search_word.lower() in title.lower():

matches += 1
print(rank, "\t", votes, "\t", rating, "\t", title)

print(matches, "matches.")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

movies.py

