
Unit 5

while loops; logic; random numbers; tuples

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0



2

while Loops

while test:

statements

# Sums integers entered by the user

# until -1 is entered, using a sentinel loop.

sum = 0

num = int(input("Type a number (-1 to quit)? "))

while n != -1:

sum += num

num = int(input("Type a number (-1 to quit)? "))

print("The total is", sum)

1

2

3

4

5

6

7

8

9

10

sentinel.py



3

Random Numbers

from random import *

randint(min, max)

– returns a random integer in range [min, max] inclusive

choice(sequence)

– returns a randomly chosen value from the given sequence

– (the sequence can be a range, a string, an array, ...)

>>> from random import *
>>> randint(1, 5)
2

>>> randint(1, 5)
5

>>> choice(range(4, 20, 2))
16

>>> choice("hello")
'e'



4

while / else

while test:

statements

else:

statements

– Executes the else part if the loop never enters

– There is also a similar for / else statement

>>> n = 91
>>> while n % 2 == 1:
...     n += 1

... else:

...     print(n, "was even; no loop.")

...

91 was even; no loop.



5

bool

• Python's logic type, equivalent to boolean in Java

– True and False start with capital letters

>>> 5 < 10
True

>>> b = 5 < 10
>>> b
True

>>> if b:
...     print("The value is true")
...

The value is true

>>> b = not b
>>> b
False



6

Logical Operators

Operator Example Result

and 2 == 3 and -1 < 5 False

or 2 == 3 or  -1 < 5 True

not not -1 < 5 False

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True



7

Exercise

• Rewrite the Dice program from Java to Python:

2 + 4 = 6

3 + 5 = 8

5 + 6 = 11

1 + 1 = 2

4 + 3 = 7

You won after 5 tries!



8

Tuple

tuple_name = (value, value, ..., value)
– A way of "packing" multiple values into one variable

name, name, ..., name = tuple_name
– "unpacking" a tuple's contents into multiple variables

>>> x = 3
>>> y = -5
>>> p = (x, y, 42)
>>> p
(3, -5, 42)

>>> a, b, c = p
>>> a
3

>>> b
-5

>>> c
42



9

Using Tuples

• Useful for storing multi-dimensional data (e.g. (x, y) points)

• Useful for returning more than one value

>>> p = (42, 79)

>>> from random import *
>>> def roll2():
...     die1 = randint(1, 6)
...     die2 = randint(1, 6)
...     return (die1, die2)
...

>>> d1, d2 = roll2()
>>> d1
6

>>> d2
4



10

Tuple as Parameter

def name( (name, name, ..., name), ... ):

statements

– Declares tuple as a parameter by naming each of its pieces

>>> def slope((x1, y1), (x2, y2)):
...     return (y2 - y1) / (x2 - x1)
...

>>> p1 = (2, 5)
>>> p2 = (4, 11)
>>> slope(p1, p2)

3



11

Tuple as Return

def name(parameters):

statements

return (name, name, ..., name)

>>> from random import *
>>> def roll2():
...     die1 = randint(1, 6)
...     die2 = randint(1, 6)
...     return (die1, die2)
...

>>> d1, d2 = roll2()
>>> d1
6

>>> d2
4



12

Exercise

• Write a program that performs a graphical "random walk".

– Create a DrawingPanel of size 150x150.

– Draw a circle of radius 75.

– Start a "walker" pixel at (75, 75), the circle's center.

– Every 10 ms, randomly move the walker by 1 pixel in
either the x or y direction and redraw the walker.

– Once the walker reaches the edge of the circle, stop walking.

• Key questions:

– How do we randomly move by 1 pixel?

– How do we know when we have reached
the edge of the circle?


