
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9
Lecture 9-2: Interacting with the Superclass (super);

Discussion of Homework 9: Critters

reading: 9.2

Copyright 2008 by Pearson Education
2

Copyright 2008 by Pearson Education
3

Calling overridden methods
�  Subclasses can call overridden methods with super

 super.method(parameters)

�  Example:

 public class LegalSecretary extends Secretary {
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.0;
 }
 ...
 }

Copyright 2008 by Pearson Education
4

Inheritance and constructors
�  Imagine that we want to give employees more vacation

days the longer they've been with the company.
�  For each year worked, we'll award 2 additional vacation days.

�  When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

�  This will require us to modify our Employee class and add
some new state and behavior.

�  Exercise: Make necessary modifications to the Employee class.

Copyright 2008 by Pearson Education
5

Modified Employee class
public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getHours() {
 return 40;
 }

 public double getSalary() {
 return 50000.0;
 }

 public int getVacationDays() {
 return 10 + 2 * years;
 }

 public String getVacationForm() {
 return "yellow";
 }
}

Copyright 2008 by Pearson Education
6

Problem with constructors
�  Now that we've added the constructor to the Employee

class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee
public class Lawyer extends Employee {
 ^

�  The short explanation: Once we write a constructor (that

requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

�  The long explanation: (next slide)

Copyright 2008 by Pearson Education
7

The detailed explanation
�  Constructors are not inherited.

�  Subclasses don't inherit the Employee(int) constructor.

�  Subclasses receive a default constructor that contains:

public Lawyer() {
 super(); // calls Employee() constructor
}

�  But our Employee(int) replaces the default Employee().
�  The subclasses' default constructors are now trying to call a

non-existent default Employee constructor.

Copyright 2008 by Pearson Education
8

Calling superclass constructor
 super(parameters);

�  Example:

 public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years); // calls Employee constructor
 }
 ...
 }

�  The super call must be the first statement in the constructor.

�  Exercise: Make a similar modification to the Marketer class.

Copyright 2008 by Pearson Education
9

Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public Marketer(int years) {
 super(years);
 }

 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return super.getSalary() + 10000.0;
 }
}

�  Exercise: Modify the Secretary subclass.
�  Secretaries' years of employment are not tracked.
�  They do not earn extra vacation for years worked.

Copyright 2008 by Pearson Education
10

Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {
 public Secretary() {
 super(0);
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

�  Since Secretary doesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.

�  Its default constructor calls the Secretary() constructor.

Copyright 2008 by Pearson Education
11

Inheritance and fields
�  Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {
 ...
 public double getSalary() {
 return super.getSalary() + 5000 * years;
 }
 ...
}

�  Does not work; the error is the following:
Lawyer.java:7: years has private access in Employee
 return super.getSalary() + 5000 * years;
 ^

�  Private fields cannot be directly accessed from subclasses.
�  One reason: So that subclassing can't break encapsulation.
�  How can we get around this limitation?

Copyright 2008 by Pearson Education
12

Improved Employee code
Add an accessor for any field needed by the subclass.

public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getYears() {
 return years;
 }
 ...
}

public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years);
 }

 public double getSalary() {
 return super.getSalary() + 5000 * getYears();
 }
 ...
}

Copyright 2008 by Pearson Education
13

Revisiting Secretary
�  The Secretary class currently has a poor solution.

�  We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

�  If we call getYears on a Secretary object, we'll always get 0.
�  This isn't a good solution; what if we wanted to give some

other reward to all employees based on years of service?

�  Redesign our Employee class to allow for a better solution.

Copyright 2008 by Pearson Education
14

Improved Employee code
•  Let's separate the standard 10 vacation days from those

that are awarded based on seniority.

public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getVacationDays() {
 return 10 + getSeniorityBonus();
 }

 // vacation days given for each year in the company
 public int getSeniorityBonus() {
 return 2 * years;
 }
 ...
}

�  How does this help us improve the Secretary?

Copyright 2008 by Pearson Education
15

Improved Secretary code
•  Secretary can selectively override getSeniorityBonus;

when getVacationDays runs, it will use the new version.
�  Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
 public Secretary(int years) {
 super(years);
 }

 // Secretaries don't get a bonus for their years of service.
 public int getSeniorityBonus() {
 return 0;
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2008 by Pearson Education

Homework 9:
Critters

reading: HW9 spec

Copyright 2008 by Pearson Education
17

CSE 142 Critters
�  Ant
�  Bird
�  Hippo
�  Vulture
�  Husky (creative)

�  behavior:
�  eat eating food
�  fight animal fighting
�  getColor color to display
�  getMove movement
�  toString letter to display

Copyright 2008 by Pearson Education
18

A Critter subclass
public class name extends Critter { ... }

public abstract class Critter {
 public boolean eat()
 public Attack fight(String opponent)
 // ROAR, POUNCE, SCRATCH
 public Color getColor()
 public Direction getMove()
 // NORTH, SOUTH, EAST, WEST, CENTER
 public String toString()
}

Copyright 2008 by Pearson Education
19

How the simulator works
�  "Go" →	
 	
 loop:

�  move each animal (getMove)
�  if they collide, fight
�  if they find food, eat

�  Simulator is in control!
�  getMove is one move at a time

�  (no loops)
�  Keep state (fields)

�  to remember future moves
%

Next	

move?	

Copyright 2008 by Pearson Education
20

Development Strategy
�  Do one species at a time

�  in ABC order from easier to harder (Ant → Bird → ...)
�  debug printlns

�  Simulator helps you debug
�  smaller width/height
�  fewer animals
�  "Tick" instead of "Go"
�  "Debug" checkbox
�  drag/drop to move animals

Copyright 2008 by Pearson Education
21

Critter exercise: Cougar
�  Write a critter class Cougar:

Method Behavior
constructor public Cougar()
eat Always eats.
fight Always pounces.
getColor Blue if the Cougar has never fought; red if he has.

getMove Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

toString "C"

Copyright 2008 by Pearson Education
22

Ideas for state
�  You must not only have the right state, but update that

state properly when relevant actions occur.

�  Counting is helpful:
�  How many total moves has this animal made?
�  How many times has it eaten? Fought?

�  Remembering recent actions in fields is helpful:
�  Which direction did the animal move last?

�  How many times has it moved that way?
�  Did the animal eat the last time it was asked?
�  How many steps has the animal taken since last eating?
�  How many fights has the animal been in since last eating?

Copyright 2008 by Pearson Education
23

Cougar solution
import java.awt.*; // for Color

public class Cougar extends Critter {
 private boolean west;
 private boolean fought;

 public Cougar() {
 west = true;
 fought = false;
 }

 public boolean eat() {
 west = !west;
 return true;
 }

 public Attack fight(String opponent) {
 fought = true;
 return Attack.POUNCE;
 }

 ...

Copyright 2008 by Pearson Education
24

Cougar solution
 ...

 public Color getColor() {
 if (fought) {
 return Color.RED;
 } else {
 return Color.BLUE;
 }
 }

 public Direction getMove() {
 if (west) {
 return Direction.WEST;
 } else {
 return Direction.EAST;
 }
 }

 public String toString() {
 return "C";
 }
}

