Building Java Programs

Chapter 9

Lecture 9-2: Interacting with the Superclass (super);
Discussion of Homework 9: Critters

reading: 9.2

~ Copyright 2008 by Pearson Education

T Copyright 2008 t

Tungsten car?/ide bushes

Solid mahogany

What Product Marketing
specified

Sun shade

What the salesman
promised

Corp. Product Architecture's
modified design

design

:
4

Pre-release version

What the customer
actually wanted

Generai ralease version

 —
Calling overridden methods

e Subclasses can call overridden methods with super
super . method (parameters)

» Example:

public class LegalSecretary extends Secretary {
pulbiviandonblievgetSamhvawarin
double baseSalary = super.getSalary();
return baseSalary + 5000.0;

. Copyright 2008 by Pearson Education

- aanmll

—

Inheritance and constructors

* Imagine that we want to give employees more vacation
days the longer they've been with the company.

» For each year worked, we'll award 2 additional vacation days.

« When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

e This will require us to modify our Employee class and add
some new state and behavior.

» Exercise: Make necessary modifications to the Employee class.

k) 4
: Copyright 2008 by Pearson Education

e

Modified Employee class

public class Employee {
private int years;

public Employee (int initialYears) {
years = initialYears;

}

public int getHours () {
return 40;

}

publicrdoublevgetSalaryiy
return 50000.0;
}

P resminErgetVacarionbaaiied
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

~ Copyright 2008 by Pearson Education

——

g

Problem with constructors

* Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Wiy M na eh s e el U Re s i e N e s e vl e T
symbol s constructor Employee ()
location: class Employee

public class Lawyer extends Employee {

A

» The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

 The long explanation: (next slide)

i Copyright 2008 by Pearson Education

g - _ : .
The detailed explanation

» Constructors are not inherited.
o Subclasses don't inherit the Employee (int) constructor.

e Subclasses receive a default constructor that contains:

public Lawyer () {
super () ; // calls Employee () constructor

e But our Employee (int) replaces the default Employee ().

» The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

Copyright 2008 by Pearson Education

e

e
Calling superclass constructor

super (parameters) ;

» Example:
public class Lawyer extends Employee {
public Lawyer (int years) {
super (years); // calls Employee constructor

}

}

» The super call must be the first statement in the constructor.

o Exercise: Make a similar modification to the Marketer class.

. Copyright 2008 by Pearson Education

e

_ =
Modified Marketer class

// A class to represent marketers.
public class Marketer extends Employee ({
public Marketer (int years) {
super (years) ;

}

o DA VAN SO M Ad 27 8 A A S e 1T W R)
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
return super.getSalary() + 10000.0;

}

» Exercise: Modify the secretary subclass.
« Secretaries' years of employment are not tracked.
« They do not earn extra vacation for years worked.

__ Copyright 2008 by Pearson Education

e

.
Modified Secretary class

// A class to represent secretaries.
public class Secretary extends Employee {
public Secretary () {
super (0) ;
}

o DA VANV By A S o R B e A MBI AN A e A R 26 S W A A R
SRR R IR Y N AN S A WA A W AV A W = O 0 G 7 R Y o = W I A Y VAR A YRR) R A A S e S

}

» Since secretary doesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.

« Its default constructor calls the secretary () constructor.

— 10
; Copyright 2008 by Pearson Education

——

Inheritance and fields

e Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {

g

public double getSalary () {
return super.getSalary() + 5000 * years;

}

)
* Does not work; the error is the following:

Lawyer.java:/7: years has private access 1n Employee
return super.getSalary() + 5000 * years;

A

* Private fields cannot be directly accessed from subclasses.
 One reason: So that subclassing can't break encapsulation.
« How can we get around this limitation?

k) 11
: Copyright 2008 by Pearson Education

Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee {
private int years;

public Employee(int initialYears) {
years = 1nitialYears;

}

public int getYears() ({
return years;
}

}

public class Lawyer extends Employee ({
public Lawyer (int years) {
super (years);
}

A A RN B e S Y B et
return super.getSalary() + 5000 * getYears():
}

. Copyright 2008 by Pearson Education

/W

Revisiting Secretary
* The secretary class currently has a poor solution.

» We set all Secretaries to O years because they do not get a
vacation bonus for their service.

o If we call getyears on a Secretary object, we'll always get 0.

e This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

e —

e Redesign our Employee class to allow for a better solution.

13
Copyright 2008 by Pearson Education

Improved Employee code

o Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
private int years;

AN A N G MRV S T S Y i e s e R e R

years = initialYears;
}

pubievvip b e tararhonbaiaaa v
return 10 + getSeniorityBonus()
}

// vacation days given for each year in the company
public int getSeniorityBonus () {
return 2 * years;

}
: S

» How does this help us improve the Secretary?

£ 14
Copyright 2008 by Pearson Education

Improved Secretary code

- Secretary can selectively override getSeniorityBonus;
when getVacationDays runs, it will use the new version.
 Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {
super (years) ;
}
// Secretaries don't get a bonus for their years of service.

public int getSeniorityBonus () {
return O;

}

S SYNA N GAAA TR o0 M B Y D S Y- A W e 6T Ao Ay A MUY S IAIEY o G L AR

System.out.println ("Taking dictation of text: " + text);

}
}
15

~ " Copyright 2008 by Pearson Education

Homework 9:
Critters

reading: HW9 spec

—

e Ant

s =
SIS
Vulture
e Husky

* behavior:
G srchy
O RN A
e getColor
® getMove

o LoSLEIng

CSE 142 Critters

(creative)

eating food
animal fighting
color to display
movement
letter to display

~ Copyright 2008 by Pearson Education

=loix]

L
L w .
. B . .8
[9F . B w.
&) 8 .
. 88
] w
8 N]
w w
w .
3 .
8
L B
B
B s B
g
L
. . B.W
L
8. 7 5
8 . 8 L
L
w 4AWE
. w L
8
L 8 w W
B L 55
w B
2 B SN
5
29 . 88 L
w
L . L
(%] W B w
. . W. s
8. . WL
8 L B B
L .L BW
0 L
—_ Tick Reset
MI'J‘I"‘I -m-_,——]
™ Husky background colors

 Aways @ Ask " Never

%

e

e
A Critter subclass
pubidizevolass NAame extends Critter Wi

publasec abstracticlassiGryiter |
public boolean eat /()
pubilvci Attack v ngh b hEineg woponcnty
// ROAR, POUNCE, SCRATCH
bbbl vertolorige oo)
public Direction getMove ()
// NORTH, SOUTH, EAST, WEST, CENTER
public String toString/()

. Copyright 2008 by Pearson Education

e

 —
How the simulator works

* "Go" - loop:
» move each animal (getMove)
« if they collide, fight
« if they find food, eat

e Simulator is in control!
* getMove IS one move at a time
« (no loops)
» Keep state (fields)
« to remember future moves

S

~ 7" Copyright 2008 by Pearson Education

————
Development Strategy

* Do one species at a time

» in ABC order from easier to harder (Ant - Bird > ...)
» debug printilns

e Simulator helps you debug
» smaller width/height
» fewer animals
» "Tick" instead of "Go"
 "Debug" checkbox
» drag/drop to move animals

i Copyright 2008 by Pearson Education

20

e —

e

/W/

ritter exercise: Cougar

o Write a critter class Cougar:

Method Behavior

constructor | public Cougar ()

eat Always eats.

fight Always pounces.

getColor |Blue if the cougar has never fought; red if he has.

getMove Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

O EANIC] oL

Copyright 2008 by Pearson Education

2k

I

Ideas for state

* You must not only have the right state, but update that
state properly when relevant actions occur.

e Counting is helpful:
« How many total moves has this animal made?
* How many times has it eaten? Fought?

e Remembering recent actions in fields is helpful:

o Which direction did the animal move last?
« How many times has it moved that way?

* Did the animal eat the last time it was asked?
« How many steps has the animal taken since last eating?
« How many fights has the animal been in since last eating?

x Copyright 2008 by Pearson Education

2

Cougar solution

T i S SR AV M A S L s e e

public class Cougar extends Critter {

private boolean west;
private boolean fought;

SN A YA M B oY 0 Pl o8 B
west = true;
fought = false;

}

public boolean eat () {
west = !west;
A A Y A PR S Y

}

VATEN YN MBAVA o =) A R A S A A AR A AR & I M PR MY Y S RS R
fought = true;
return Attack.POUNCE;

-

~ Copyright 2008 by Pearson Education

29

R A Y I AT

| m—

Cougar solution

eislo bt Mo Mo hutitle 1oy ol BYe N oY o @ Vs
if (fought) {
Y% AU A 0 R O 0 A Y W B TR B
} else {
e birnyCobor BT

}
}

public Direction getMove () {
105 i B = f R e
return Direction.WEST;
} else {
i) =904 b1 a0 B B o < Y@ B @ 0 6 WA Y SR
}
}

YR e M MR SR ER Y R SRt Yo e e AV
Y8 = Vi g R B

}

i 24
__ Copyright 2008 by Pearson Education

