
hi

bye 1

Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-3: Encapsulation

reading: 8.4 - 8.6

Copyright 2010 by Pearson Education
2

Accessor method questions
  Write a method distance that computes the distance

between a Point and another Point parameter.

 Use the formula:

  Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

  Modify the client code to use these methods.

Copyright 2010 by Pearson Education
3

Accessor method answers
public double distance(Point other) {
 int dx = x - other.x;
 int dy = y - other.y;
 return Math.sqrt(dx * dx + dy * dy);
}

public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
}

// alternative solution that uses distance
public double distanceFromOrigin() {
 Point origin = new Point();
 return distance(origin);
}

Copyright 2010 by Pearson Education
4

The toString method

reading: 8.2

Copyright 2010 by Pearson Education
5

Printing objects
  By default, Java doesn't know how to print objects:

Point p = new Point();
p.x = 10;
p.y = 7;
System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)
System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

Copyright 2010 by Pearson Education
6

The toString method
tells Java how to convert an object into a String

 Point p1 = new Point(7, 2);
 System.out.println("p1: " + p1);

 // the above code is really calling the following:
 System.out.println("p1: " + p1.toString());

  Every class has a toString, even if it isn't in your code.
  Default: class's name @ object's memory address (base 16)

 Point@9e8c34

hi

bye 2

Copyright 2010 by Pearson Education
7

toString syntax
 public String toString() {

 code that returns a String representing this object;
 }

  Method name, return, and parameters must match exactly.

  Example:

 // Returns a String representing this Point.
 public String toString() {
 return "(" + x + ", " + y + ")";
 }

Copyright 2010 by Pearson Education
8

Encapsulation

reading: 8.4 – 8.5

Copyright 2010 by Pearson Education
9

Encapsulation
  encapsulation: Hiding implementation details from clients.

  Encapsulation forces abstraction.
  separates external view (behavior) from internal view (state)

  protects the integrity of an object's data

Copyright 2010 by Pearson Education
10

Private fields
A field that cannot be accessed from outside the class

 private type name;

  Examples:

 private int id;
 private String name;

  Client code won't compile if it accesses private fields:

PointMain.java:11: x has private access in Point
System.out.println(p1.x);
 ^

Copyright 2010 by Pearson Education
11

Accessing private state
 // A "read-only" access to the x field ("accessor")
 public int getX() {
 return x;
 }

 // Allows clients to change the x field ("mutator")
 public void setX(int newX) {
 x = newX;
 }

  Client code will look more like this:

 System.out.println(p1.getX());
 p1.setX(14);

Copyright 2010 by Pearson Education
12

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {
 private int x;
 private int y;
 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 setLocation(x + dx, y + dy);
 }
}

hi

bye 3

Copyright 2010 by Pearson Education
13

Benefits of encapsulation
  Abstraction between object and clients

  Protects object from unwanted access
  Example: Can't fraudulently increase an Account's balance.

  Can change the class implementation later
  Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

  Can constrain objects' state (invariants)
  Example: Only allow Accounts with non-negative balance.

  Example: Only allow Dates with a month from 1-12.

Copyright 2010 by Pearson Education
14

The keyword this

reading: 8.7

Copyright 2010 by Pearson Education
15

The this keyword
  this : Refers to the implicit parameter inside your class.

 (a variable that stores the object on which a method is called)

  Refer to a field: this.field

  Call a method: this.method(parameters);

  One constructor this(parameters);
can call another:

Copyright 2010 by Pearson Education
16

Variable shadowing
  shadowing: 2 variables with same name in same scope.

  Normally illegal, except when one variable is a field.

 public class Point {
 private int x;
 private int y;

 ...

 // this is legal
 public void setLocation(int x, int y) {
 ...
 }

  In most of the class, x and y refer to the fields.
  In setLocation, x and y refer to the method's parameters.

Copyright 2010 by Pearson Education
17

Fixing shadowing
 public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
 }

  Inside setLocation,
  To refer to the data field x, say this.x
  To refer to the parameter x, say x

Copyright 2010 by Pearson Education
18

Calling another constructor
 public class Point {
 private int x;
 private int y;

 public Point() {
 this(0, 0); // calls (x, y) constructor
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 ...
 }

  Avoids redundancy between constructors
  Only a constructor (not a method) can call another constructor

