
hi

bye 1

Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-2: Object Behavior (Methods)

reading: 8.2

Copyright 2010 by Pearson Education
2

Client code redundancy
  Our client program wants to draw Point objects:

// draw each city
g.fillOval(cities[i].x, cities[i].y, 3, 3);
g.drawString("(" + cities[i].x + ", " + cities[i].y + ")",
 cities[i].x, cities[i].y);

  To draw them in other places, the code must be repeated.
  We can remove this redundancy using a method.

Copyright 2010 by Pearson Education
3

Eliminating redundancy, v1
  We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.
public static void draw(Point p, Graphics g) {
 g.fillOval(p.x, p.y, 3, 3);
 g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);
}

  main would call the method as follows:
// draw each city
draw(cities[i], g);

Copyright 2010 by Pearson Education
4

Problems with static solution
  We are missing a major benefit of objects: code reuse.

  Every program that draws Points would need a draw method.

  The syntax doesn't match how we're used to using objects.

 draw(cities[i], g); // static (bad)

  The point of classes is to combine state and behavior.

  The draw behavior is closely related to a Point's data.

  The method belongs inside each Point object.

 cities[i].draw(g); // inside object (better)

Copyright 2010 by Pearson Education
5

Instance methods
  instance method (or object method): Exists inside each

object of a class and gives behavior to each object.

 public type name(parameters) {
 statements;
 }

  same syntax as static methods, but without static keyword

 Example:

 public void shout() {
 System.out.println("HELLO THERE!");
 }

Copyright 2010 by Pearson Education
6

Instance method example
public class Point {
 int x;
 int y;

 // Draws this Point object with the given pen.
 public void draw(Graphics g) {
 ...
 }
}

  The draw method no longer has a Point p parameter.

  How will the method know which point to draw?
  How will the method access that point's x/y data?

hi

bye 2

Copyright 2010 by Pearson Education
7

  Each Point object has its own copy of the draw method, which
operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.draw(g);
p2.draw(g);

public void draw(Graphics g) {
 // this code can see p1's x and y
}

Point objects w/ method

x 7 y 2

x 4 y 3

public void draw(Graphics g) {
 // this code can see p2's x and y
}

p2

p1

Copyright 2010 by Pearson Education
8

The implicit parameter
  implicit parameter:

The object on which an instance method is called.

  During the call p1.draw(g);
the object referred to by p1 is the implicit parameter.

  During the call p2.draw(g);
the object referred to by p2 is the implicit parameter.

  The instance method can refer to that object's fields.

  We say that it executes in the context of a particular object.

  draw can refer to the x and y of the object it was called on.

Copyright 2010 by Pearson Education
9

Point class, version 2
public class Point {
 int x;
 int y;

 // Changes the location of this Point object.
 public void draw(Graphics g) {
 g.fillOval(x, y, 3, 3);
 g.drawString("(" + x + ", " + y + ")", x, y);
 }
}

  Each Point object contains a draw method that draws that
point at its current x/y position.

Copyright 2010 by Pearson Education
10

Kinds of methods
  accessor: A method that lets clients examine object state.

  Examples: distance, distanceFromOrigin
  often has a non-void return type

  mutator: A method that modifies an object's state.
  Examples: setLocation, translate

Copyright 2010 by Pearson Education
11

Mutator method questions
  Write a method setLocation that changes a Point's

location to the (x, y) values passed.

  Write a method translate that changes a Point's location
by a given dx, dy amount.

  Modify the Point and client code to use these methods.

Copyright 2010 by Pearson Education
12

Mutator method answers
public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
}

public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
}

// alternative solution that utilizes setLocation
public void translate(int dx, int dy) {
 setLocation(x + dx, y + dy);
}

hi

bye 3

Copyright 2010 by Pearson Education
13

Accessor method questions
  Write a method distance that computes the distance

between a Point and another Point parameter.

 Use the formula:

  Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

  Modify the client code to use these methods.

Copyright 2010 by Pearson Education
14

Accessor method answers
public double distance(Point other) {
 int dx = x - other.x;
 int dy = y - other.y;
 return Math.sqrt(dx * dx + dy * dy);
}

public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
}

// alternative solution that uses distance
public double distanceFromOrigin() {
 Point origin = new Point();
 return distance(origin);
}

Copyright 2010 by Pearson Education
15

Object initialization:
constructors

reading: 8.3

Copyright 2010 by Pearson Education
16

Initializing objects
  Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();
p.x = 3;
p.y = 8; // tedious

  We'd rather specify the fields' initial values at the start:
Point p = new Point(3, 8); // better!

  We are able to this with most types of objects in Java.

Copyright 2010 by Pearson Education
17

Constructors
  constructor: Initializes the state of new objects.

 public type(parameters) {
 statements;
 }

  runs when the client uses the new keyword

  no return type is specified;
it implicitly "returns" the new object being created

  If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to 0.

Copyright 2010 by Pearson Education
18

Constructor example
public class Point {
 int x;
 int y;

 // Constructs a Point at the given x/y location.
 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }

 ...
}

hi

bye 4

Copyright 2010 by Pearson Education
19

Tracing a constructor call
  What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
}

public void translate(int dx, int dy) {
 x += dx;
 y += dy;
}

x y p1

Copyright 2010 by Pearson Education
20

Client code, version 3
public class PointMain3 {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point(5, 2);
 Point p2 = new Point(4, 3);

 // print each point
 System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 // move p2 and then print it again
 p2.translate(2, 4);
 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");
 }
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)

Copyright 2010 by Pearson Education
21

Multiple constructors
  A class can have multiple constructors.

  Each one must accept a unique set of parameters.

  Exercise: Write a Point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point() {
 x = 0;
 y = 0;
}

Copyright 2010 by Pearson Education
22

Common constructor bugs
1. Re-declaring fields as local variables ("shadowing"):

 public Point(int initialX, int initialY) {
 int x = initialX;
 int y = initialY;
 }

  This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:
 public void Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

  This is actually not a constructor, but a method named Point

