bye

9 Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-2: Object Behavior (Methods)

reading: 8.2

7 Copyright 2010 by Pearson Education

Client code redundancy

* Our client program wants to draw Point objects:

// draw each city

g.fillOval (cities[i].x, cities[il.y, 3, 3);

g.drawString (" (" + cities[il.x + ", " + cities[il.y + m",
cities[i].x, cities[i].y);

* To draw them in other places, the code must be repeated.
« We can remove this redundancy using a method.

Eliminating redundancy, v1

* We can eliminate the redundancy with a static method:
// Draws the given point on the DrawingPanel.
public static void draw(Point p, Graphics g) {
G Erloval D= Dy e
grdrawstring@iEE i Ep e s Wy prya e o, Do)

* main would call the method as follows:

// draw each city
draw(cities[i], g);

9 Copyright 2010 by Pearson Education

Problems with static solution

* We are missing a major benefit of objects: code reuse.
« Every program that draws Points would need a draw method.

* The syntax doesn't match how we're used to using objects.
draw(cities[i], g); // static (bad)
* The point of classes is to combine state and behavior.

= The draw behavior is closely related to a Point's data.
= The method belongs inside each point object.

cities[i].draw(g); // inside object (better)

7 Copyright 2010 by Pearson Education

Instance methods

* instance method (or object method): Exists inside each
object of a class and gives behavior to each object.

public type name (parameters) {
statements;
}

« same syntax as static methods, but without static keyword

Example:

pubilticEvoaideEshouts(EE
System.out.println ("HELLO THERE!");

}

= copyright 2010 by Pearson Education

Instance method example

public class Point {
int x;
A NiEE

// Draws this Point object with the given pen.
public void draw(Graphics g) {

}
}
« The draw method no longer has a Point p parameter.
« How will the method know which point to draw?
+ How will the method access that point's x/y data?

.= copyright 2010 by Pearson Education




bye

Point objects w/ method

¢ Each point object has its own copy of the draw method, which
operates on that object's state:

p1
Point pl = new Point();
pl.x = 7;
pily==—2

«[7]

Point p2 = new Point();

p2.x = 4; public void draw(Graphics g) {

p2.y = 3; // this code can see pl's x and y
}

pl.draw(q);

p2.draw(q) ;

«[a]

public void draw(Graphics g) (
// this code can see p2's x and y

r2(O—

i

0 Copyright 2010 by Pearson Education

Point class, version 2

public classEPoint
int x;
int y;

// Changes the location of this Point object.
public void draw(Graphics g) {

g E1110val-@X, W, 3, 3);

g.drawString("(" + x + ", "+ y + ")", x, y);

}

« Each point object contains a draw method that draws that
point at its current x/y position.

9 Copyright 2010 by Pearson Education

Mutator method questions

¢ Write a method setLocation that changes a point's
location to the (x, y) values passed.

¢ Write a method translate that changes a Point's location
by a given dx, dy amount.

« Modify the Point and client code to use these methods.

Copyright 2010 by Pearson Education

The implicit parameter

» implicit parameter:
The object on which an instance method is called.
« During the call p1.draw(g);
the object referred to by p1 is the implicit parameter.

« During the call p2.draw(g) ;
the object referred to by p2 is the implicit parameter.

= The instance method can refer to that object's fields.
- We say that it executes in the context of a particular object.
« draw can refer to the x and vy of the object it was called on.

7 Copyright 2010 by Pearson Education

Kinds of methods

» accessor: A method that lets clients examine object state.
« Examples: distance, distanceFromOrigin
« often has a non-void return type

* mutator: A method that modifies an object's state.
. Examples: setLocation, translate

=] 10
7 Copyright 2010 by Pearson Education

Mutator method answers

public void setLocation(int newX, int newY) {
x newx;
v newy;

public void translate(int dx, int dy) {
x =

VsV b dy

}

// alternative solution that utilizes setLocation

public wvoild: transiateitintadx,—int dv)==
setLocation(x + dx, y + dy):

}

12
Copyright 2010 by Pearson Education




bye

Accessor method questions

* Write a method distance that computes the distance
between a point and another point parameter.

xlf"‘ |)2

* Write a method distanceFromOrigin that returns the
distance between a point and the origin, (0, 0).

Use the formula: +/(x,

= Modify the client code to use these methods.

0 Copyright 2010 by Pearson Education

Accessor method answers

public double distance (Point other) {
int dx = x - other_x;
HinEE dya=Rve S othensy:
return Math.sgrt(dx * dx + dy * dy);

public double distanceFromOrigin() {
return Math.sqgrt(x * x + y * y);
}

// alternative solution that uses distance
public double distanceFromOrigin() {

Point origin = new Point();

return distance (origin);

7 Copyright 2010 by Pearson Education

9 Copyright 2010 by Pearson Education

Object initialization:
constructors

reading: 8.3

= copyright 2010 by Pearson Education

Constructors

» constructor: Initializes the state of new objects.

public type(parameters) {
statements;
I}

= runs when the client uses the new keyword
= no return type is specified;
it implicitly "returns" the new object being created

« If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to 0.

Initializing objects

* Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();

p.x = 3;
P.y = 8; // tedious

» We'd rather specify the fields' initial values at the start:

Point p = new Point (3, 8); // better!

= We are able to this with most types of objects in Java.

5 Copyright 2010 by Pearson Education

.= copyright 2010 by Pearson Education

Constructor example

public class Point {
int x;
int y;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {
= initialX;

x
y initialyY;

publicivoid translate (int dx, int dy)={
e =l dx;
y =

}




bye

Tracing a constructor call

* What happens when the following call is made?

Point pl = new Point (7, 2);

L1 L]

publiicEPoint (intinitialX;=int initialY)={
x = initialX;
y = initialy;

p1(O—

}

public void translate(int dx, int dy) {
x 4= dx;
y-4=dy;

5 Copyright 2010 by Pearson Education

Client code, version 3

public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point pl = new Point(5, 2);
Point p2 = new Point(4, 3);
// print each point
System.out.println("pl: (" + pl.x + ", " + pl.y + ")");
ST i L roatomoanbor e E Soop LamE S ShPg e e e e s pe i S Bl o
// move p2 and then print it again
p2.translate (2, 4);
Syatem out prleCin{Tads (" k plow R o TRl G iRy
}

15

OUTPUT:

pii:e (o, )

p2: (4, 3)

p2: (6, 7)

= 20
T Copyright 2010 by Pearson Education

Multiple constructors

* A class can have multiple constructors.
« Each one must accept a unique set of parameters.

» Exercise: Write a Point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
pubilticEPoint ()

x= O

y = 0;

9 Copyright 2010 by Pearson Education

21

Common constructor bugs

1. Re-declaring fields as local variables ("shadowing"):
publsicEPodntEintaindte il Xe e ineEindsedraliys B
int x = initialX;
dintoy- = imnhtEda iy
}
« This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:

public void Point(int initialX, int initialY) {
% initialX;
y iR A EHFaNIRYE

}

= This is actually not a constructor, but a method named pPoint
22

5 Copyright 2010 by Pearson Education




