
hi

bye 1

Copyright 2010 by Pearson Education
1

Building Java Programs
Chapter 5

Lecture 5-4: More boolean,
Assertions, do/while loops

reading: 5.3, 5.4, 5.1

Copyright 2010 by Pearson Education

Type boolean

reading: 5.3

Copyright 2010 by Pearson Education
3

Recap: Type boolean
  boolean: A logical type whose values are true and false.

  A test in an if, for, or while is a boolean expression.

 boolean minor = (age < 21);

 if (minor) {
 System.out.println("Can't purchase alcohol!");

 }

  boolean expressions can be combined using logical operators:

Operator Description Example Result

&& and (2 == 3) && (-1 < 5) false

|| or (2 == 3) || (-1 < 5) true

! not !(2 == 3) true

Copyright 2010 by Pearson Education
4

"Short-circuit" evaluation
  Java stops evaluating a test if it knows the answer.

  && stops early if any part of the test is false
  || stops early if any part of the test is true

  The following test will crash if s2's length is less than 2:
 // Returns true if s1 and s2 end with the same two letters.
 public static boolean rhyme(String s1, String s2) {
 return s1.endsWith(s2.substring(s2.length() - 2)) &&
 s1.length() >= 2 && s2.length() >= 2;
 }

  The following test will not crash; it stops if length < 2:
 // Returns true if s1 and s2 end with the same two letters.
 public static boolean rhyme(String s1, String s2) {
 return s1.length() >= 2 && s2.length() >= 2 &&
 s1.endsWith(s2.substring(s2.length() - 2));
 }

Copyright 2010 by Pearson Education
5

De Morgan's Law
  De Morgan's Law: Rules used to negate boolean tests.

  Useful when you want the opposite of an existing test.

  Example:

Original Expression Negated Expression Alternative
a && b !a || !b !(a && b)
a || b !a && !b !(a || b)

Original Code Negated Code
if (x == 7 && y > 3) {
 ...
}

if (x != 7 || y <= 3) {
 ...
}

Copyright 2010 by Pearson Education
6

Boolean practice questions
  Write a method named isVowel that returns whether a
String is a vowel (a, e, i, o, or u), case-insensitively.
  isVowel("q") returns false
  isVowel("A") returns true
  isVowel("e") returns true

  Change the above method into an isNonVowel that returns
whether a String is any character except a vowel.
  isNonVowel("q") returns true
  isNonVowel("A") returns false
  isNonVowel("e") returns false

hi

bye 2

Copyright 2010 by Pearson Education
7

Boolean practice answers
// Enlightened version. I have seen the true way (and false way)
public static boolean isVowel(String s) {
 return s.equalsIgnoreCase("a") || s.equalsIgnoreCase("e") ||
 s.equalsIgnoreCase("i") || s.equalsIgnoreCase("o") ||
 s.equalsIgnoreCase("u");
}

// Enlightened "Boolean Zen" version
public static boolean isNonVowel(String s) {
 return !s.equalsIgnoreCase("a") && !s.equalsIgnoreCase("e") &&
 !s.equalsIgnoreCase("i") && !s.equalsIgnoreCase("o") &&
 !s.equalsIgnoreCase("u");

 // or, return !isVowel(s);
}

Copyright 2010 by Pearson Education
8

When to return?
  Methods with loops and return values can be tricky.

  When and where should the method return its result?

  Write a method seven that accepts a Random parameter
and uses it to draw up to ten lotto numbers from 1-30.

  If any of the numbers is a lucky 7, the method should stop
and return true. If none of the ten are 7 it should return
false.

  The method should print each number as it is drawn.

 15 29 18 29 11 3 30 17 19 22 (first call)
 29 5 29 4 7 (second call)

Copyright 2010 by Pearson Education
9

Flawed solution
// Draws 10 lotto numbers; returns true if one is 7.
public static boolean seven(Random rand) {
 for (int i = 1; i <= 10; i++) {
 int num = rand.nextInt(30) + 1;
 System.out.print(num + " ");

 if (num == 7) {
 return true;
 } else {
 return false;
 }
 }
}

  The method always returns immediately after the first roll.
  This is wrong if that roll isn't a 7; we need to keep rolling.

Copyright 2010 by Pearson Education
10

Returning at the right time
// Draws 10 lotto numbers; returns true if one is 7.
public static boolean seven(Random rand) {
 for (int i = 1; i <= 10; i++) {
 int num = rand.nextInt(30) + 1;
 System.out.print(num + " ");

 if (num == 7) { // found lucky 7; can exit now
 return true;
 }
 }

 return false; // if we get here, there was no 7
}

  Returns true immediately if 7 is found.
  If 7 isn't found, the loop continues drawing lotto numbers.
  If all ten aren't 7, the loop ends and we return false.

Copyright 2010 by Pearson Education
11

Random/while question
 Write a multiplication tutor program.

  Use a static method that returns a boolean value.
  Test multiplication of numbers between 1 and 20.
  The program stops after too many incorrect answers.
Mistakes allowed: 0

14 * 8 = 112
Correct!

5 * 12 = 60
Correct!

8 * 3 = 24
Correct!

5 * 5 = 25
Correct!

20 * 14 = 280
Correct!

19 * 14 = 256
Incorrect; the answer was 266

You solved 5 correctly.

Copyright 2010 by Pearson Education

Assertions

reading: 5.5

hi

bye 3

Copyright 2010 by Pearson Education
13

Logical assertions
  assertion: A statement that is either true or false.

Examples:
  Java was created in 1995.
  The sky is purple.
  23 is a prime number.
  10 is greater than 20.
  x divided by 2 equals 7. (depends on the value of x)

  An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

Copyright 2010 by Pearson Education
14

Reasoning about assertions
  Suppose you have the following code:

 if (x > 3) {
 // Point A
 x--;
 } else {
 // Point B
 x++;
 // Point C
 }
 // Point D

  What do you know about x's value at the three points?
  Is x > 3? Always? Sometimes? Never?

Copyright 2010 by Pearson Education
15

Assertions in code
  We can make assertions about our code and ask whether they

are true at various points in the code.
  Valid answers are ALWAYS, NEVER, or SOMETIMES.

 System.out.print("Type a nonnegative number: ");
 double number = console.nextDouble();
 // Point A: is number < 0.0 here?

 while (number < 0.0) {
 // Point B: is number < 0.0 here?
 System.out.print("Negative; try again: ");

 number = console.nextDouble();
 // Point C: is number < 0.0 here?
 }

 // Point D: is number < 0.0 here?

(SOMETIMES)

(ALWAYS)

(SOMETIMES)

(NEVER)

Copyright 2010 by Pearson Education
16

Reasoning about assertions
  Right after a variable is initialized, its value is known:

 int x = 3;
 // is x > 0? ALWAYS

  In general you know nothing about parameters' values:
 public static void mystery(int a, int b) {
 // is a == 10? SOMETIMES

  But inside an if, while, etc., you may know something:
 public static void mystery(int a, int b) {
 if (a < 0) {
 // is a == 10? NEVER
 ...
 }
 }

Copyright 2010 by Pearson Education
17

Assertions and loops
  At the start of a loop's body, the loop's test must be true:

 while (y < 10) {
 // is y < 10? ALWAYS
 ...
 }

  After a loop, the loop's test must be false:
 while (y < 10) {
 ...
 }
 // is y < 10? NEVER

  Inside a loop's body, the loop's test may become false:
 while (y < 10) {
 y++;
 // is y < 10? SOMETIMES
 }

Copyright 2010 by Pearson Education
18

"Sometimes"
  Things that cause a variable's value to be unknown

(often leads to "sometimes" answers):

  reading from a Scanner
  reading a number from a Random object
  a parameter's initial value to a method

  If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

  If you're unsure, "Sometimes" is a good guess.

hi

bye 4

Copyright 2010 by Pearson Education
19

Assertion example 1
public static void mystery(int x, int y) {
 int z = 0;

 // Point A

 while (x >= y) {
 // Point B
 x = x - y;
 z++;

 if (x != y) {
 // Point C
 z = z * 2;
 }

 // Point D

 }

 // Point E
 System.out.println(z);
}

x < y x == y z == 0

Point A

Point B

Point C

Point D

Point E

SOMETIMES SOMETIMES ALWAYS

NEVER SOMETIMES SOMETIMES

SOMETIMES NEVER NEVER

SOMETIMES SOMETIMES NEVER

ALWAYS NEVER SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2010 by Pearson Education
20

Assertion example 2
public static int mystery(Scanner console) {
 int prev = 0;
 int count = 0;
 int next = console.nextInt();

 // Point A

 while (next != 0) {
 // Point B

 if (next == prev) {
 // Point C

 count++;
 }

 prev = next;
 next = console.nextInt();

 // Point D

 }

 // Point E

 return count;
}

next == 0 prev == 0 next == prev

Point A

Point B

Point C

Point D

Point E

SOMETIMES ALWAYS SOMETIMES

NEVER SOMETIMES SOMETIMES

NEVER NEVER ALWAYS

SOMETIMES NEVER SOMETIMES

ALWAYS SOMETIMES SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2010 by Pearson Education
21

Assertion example 3
// Assumes y >= 0, and returns x^y
public static int pow(int x, int y) {
 int prod = 1;

 // Point A
 while (y > 0) {
 // Point B
 if (y % 2 == 0) {
 // Point C
 x = x * x;
 y = y / 2;
 // Point D
 } else {
 // Point E
 prod = prod * x;
 y--;
 // Point F
 }
 }
 // Point G
 return prod;
}

y > 0 y % 2 == 0

Point A

Point B

Point C

Point D

Point E

Point F

Point G

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

y > 0 y % 2 == 0

Point A SOMETIMES SOMETIMES

Point B ALWAYS SOMETIMES

Point C ALWAYS ALWAYS

Point D ALWAYS SOMETIMES

Point E ALWAYS NEVER

Point F SOMETIMES ALWAYS

Point G NEVER ALWAYS

Copyright 2010 by Pearson Education
22

while loop variations
reading: 5.1, Appendix D

Copyright 2010 by Pearson Education
23

The do/while loop
  do/while loop: Performs its test at the end of each repetition.

  Guarantees that the loop's {} body will run at least once.

 do {

 statement(s);
 } while (test);

 // Example: prompt until correct password is typed
 String phrase;
 do {
 System.out.print("Type your password: ");
 phrase = console.next();
 } while (!phrase.equals("abracadabra"));

Copyright 2010 by Pearson Education
24

do/while question
  Modify the previous Dice program to use do/while.

 2 + 4 = 6
 3 + 5 = 8
 5 + 6 = 11
 1 + 1 = 2
 4 + 3 = 7
 You won after 5 tries!

  Is do/while a good fit for our past Sentinel program?

hi

bye 5

Copyright 2010 by Pearson Education
25

do/while answer
// Rolls two dice until a sum of 7 is reached.
import java.util.*;

public class Dice {
 public static void main(String[] args) {
 Random rand = new Random();
 int tries = 0;
 int sum;

 do {
 int roll1 = rand.nextInt(6) + 1; // one roll
 int roll2 = rand.nextInt(6) + 1;
 sum = roll1 + roll2;
 System.out.println(roll1 + " + " + roll2 + " = " + sum);
 tries++;
 } while (sum != 7);

 System.out.println("You won after " + tries + " tries!");
 }
}

Copyright 2010 by Pearson Education
26

break
  break statement: Immediately exits a loop.

  Can be used to write a loop whose test is in the middle.
  The loop's test is often changed to true ("always repeat").

 while (true) {
 statement(s);

 if (test) {
 break;
 }

 statement(s);
 }

  break is considered to be bad style by some programmers.

Copyright 2010 by Pearson Education
27

Sentinel loop with break
Scanner console = new Scanner(System.in);
int sum = 0;
while (true) {
 System.out.print("Enter a number (-1 to quit): ");
 int number = console.nextInt();
 if (number == -1) { // don't add -1 to sum
 break;
 }
 sum = sum + number; // number != -1 here
}

System.out.println("The total was " + sum);

