bye

Type boolean

reading: 5.3

% Copyright 2010 by Pearson Education

9 Copyright 2010 by Pearson Education

Recap: Type boolean

* boolean: A logical type whose values are true and false.
« Atestinan if, for, or while is a boolean expression.

boolean minor = (age < 21);
if (minor) ({

System.out.println("Can't purchase alcohol!");

}

* boolean expressions can be combined using logical operators:

Operator | Description Example Result
&& and (2 == 3) && (-1 < 5) false
I or @ =3 [ (=0 < 5) true
! not IS2====3) true

Building Java Programs
Chapter 5
Lecture 5-4: More boolean,
Assertions, do/while loops
reading: 5.3, 5.4, 5.1
B3 1
B Copyright 2010 by Pearson Education

T Copyright 2010 by Pearson Education

"Short-circuit" evaluation

» Java stops evaluating a test if it knows the answer.
= s& stops early if any part of the test is false
« || stops early if any part of the test is true

» The following test will crash if s2's length is less than 2:

// Returns true if sl and s2 end with the same two letters.
public static boolean rhyme(String sl, String s2) {
return sl.endsWith(s2.substring(s2.length() - 2)) &&
sl.length() >= 2 && s2.length() >= 2;
¥

» The following test will not crash; it stops if length < 2:

// Returns true if sl and s2 end with the same two letters.
public static boolean rhyme(String sl, String s2) {
return sl.length() >= 2 & s2.length() >= 2 &&
sl.endsWith(s2.substring(s2.length() - 2));
}

De Morgan's Law

+ De Morgan's Law: Rules used to negate boolean tests.
« Useful when you want the opposite of an existing test.

Original Expr i d Expr Alternative
a & b e HES !(a && b)
al e 'a && !'b LS(a=[I=b)

« Example:

Original Code Negated Code

if (x == 7 && y > 3) { if (x '=7 || y<=3) {

) )

" Copyright 2010 by Pearson Education

== copyright 2010 by Pearson Education

Boolean practice questions

* Write a method named isvowel that returns whether a
string is a vowel (a, e, i, o, or u), case-insensitively.
e isVowel ("q") returns false
¢ isVowel ("A") returns true
* isVowel ("e") returns true

* Change the above method into an isNonvowel that returns
whether a string is any character except a vowel.
¢ isNonVowel ("g") returns true
¢ isNonVowel ("A") returns false
* isNonVowel ("e") returns false




bye

// Enlightened version. I have seen the true way (and false way)
public static boolean isVowel(String s) {
return s.equalsIgnoreCase("a") || s.equalsIgnoreCase("e") ||
s.equalsIgnoreCase("i") || s.equalsIgnoreCase("o") ||
s.equalsIgnoreCase ("u");
}
// Enlightened "Boolean Zen" version
public static boolean isNonVowel (String s) {
return !s.equalsIgnoreCase("a") && !s.equalsIgnoreCase("e") &&
!s.equalsIgnoreCase ("i") && !s.equalsIgnoreCase("o") &&
!s.equalsIgnoreCase ("u");
// or, return !isVowel(s);
)
. 7
Copyright 2010 by Pearson Education

9 Copyright 2010 by Pearson Education

Flawed solution

// Draws 10 lotto numbers; returns true if one is 7.
public static boolean seven(Random rand) {
sfore (Bhae de e ilp s e i aide
int num = rand.nextInt(30) + 1;
System.out.print (num + " ");
ife(n =17) {
return true;
} else {
return false;

}

« The method always returns immediately after the first roll.
« This is wrong if that roll isn't a 7; we need to keep rolling.

7 Copyright 2010 by Pearson Education

When to return?

* Methods with loops and return values can be tricky.
« When and where should the method return its result?

* Write a method seven that accepts a Random parameter
and uses it to draw up to ten lotto numbers from 1-30.

= If any of the numbers is a lucky 7, the method should stop
and return true. If none of the ten are 7 it should return
false.

= The method should print each number as it is drawn.

15: 2018 20 11 5250 o/ 19 02 (first call)
2952947 (second call)

Returning at the right time

// Draws 10 lotto numbers; returns true if one is 7.
public static boolean seven(Random rand) {
EorS(intEne ool Bad o= 0 B Gt B
int num = rand.nextInt(30) + 1;
SoRTE L BRI B E BT e e
if (num == 7) { // found lucky 7; can exit now
return true;
}
}
return false; // if we get here, there was no 7
}

« Returns true immediately if 7 is found.
« If 7 isn't found, the loop continues drawing lotto numbers.
- If all ten aren't 7, the loop ends and we return false.

5 Copyright 2010 by Pearson Education

: Random/while queéfion

* Write a multiplication tutor program.
« Use a static method that returns a boolean value.
« Test multiplication of numbers between 1 and 20.
« The program stops after too many incorrect answers.

Mistakes allowed:

1A ee=c112

Correct!

5 * 12 = 60

Correct!

8 *3=24

Correct!

5*5=25

Correct!

20 * 14 = 280

Correct!

19 * 14 = 256
Incorrect; the answer was 266
You solved 5 correctly.

Copyright 2010 by Pearson Education

Assertions

reading: 5.5

Copyright 2010 by Pearson Education




bye

Logical assertions

» assertion: A statement that is either true or false.

Examples:

« Java was created in 1995.

« The sky is purple.

« 23 is a prime number.

« 10 is greater than 20.

« x divided by 2 equals 7. (depends on the value of x)

* An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

0 Copyright 2010 by Pearson Education

Assertions in code

» We can make assertions about our code and ask whether they
are true at various points in the code.
« Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print ("Type a nonnegative number: ");
double number = console.nextDouble();

// Point A: is number < 0.0 here? (SOMETIMES)
while (number < 0.0) {
// Point B: is number < 0.0 here? (ALWAYS)

System.out.print ("Negative; try again: ");

number = console.nextDouble () ;
// Point C: is number < 0.0 here? (SOMETIMES)
}

// Point D: is number < 0.0 here? (NEVER)

9 Copyright 2010 by Pearson Education

7 Copyright 2010 by Pearson Education

Reasoning about assertions

» Suppose you have the following code:
E (x0)
// Point A
X==;
} else {
// Point B
x++;
// Point C
}
// Point D

¢ What do you know about x's value at the three points?
« Isx > 3? Always? Sometimes? Never?

Reasoning about assertions

» Right after a variable is initialized, its value is known:
ibgle L
// is x > 0? ALWAYS

« In general you know nothing about parameters' values:
public static void mystery(int a, int b) {
// is a == 10? SOMETIMES

* But inside an if, while, etc., you may know something:
public static void mystery(int a, int b) {
HiE (&< 0) |
// is a == 10? NEVER

}

=] 16

7 Copyright 2010 by Pearson Education

= copyright 2010 by Pearson Education

Assertions and loops

* At the start of a loop's body, the loop's test must be true:
whitl'es (s <T 10N
// is y < 10? ALWAYS

}

* After a loop, the loop's test must be false:
while (y < 10) {

}
// is y < 10? NEVER

 Inside a loop's body, the loop's test may become false:
while (y < 10) {
y++;
// is y < 10? SOMETIMES
}

n e n
Sometimes
¢ Things that cause a variable's value to be unknown
(often leads to "sometimes" answers):

« reading from a Scanner
« reading a number from a Random object
« a parameter's initial value to a method

« If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

« If you're unsure, "Sometimes" is a good guess.

Copyright 2010 by Pearson Education




bye

Assertion example 2

public static int mystery(Scanner console) {
int prev = 0;
int count 0;
int next = console.nextInt();

// Point A = = 2
e Which of the following assertions are
// Point B true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

if (next == prev) {
// Point C
count++; next == 0| prev == 0[next == prev
Point A | SOMETIMES | ALwAYS SOMETIMES
DESYES ok i NEVER SOMETIMES | SOMETIMES
next = console.nextInt(); bointe
// Point D Point C | NEVER NEVER ALWAYS
} Point D | SOMETIMES | NEVER SOMETIMES
// Point E Point E | ALWAYS SOMETIMES | SOMETIMES
return count;
}
= 20
5 Copyright 2010 by Pearson Education

public static void mystery(int x, int y) {
AntEze =)
// Point A
while (x >= y) { = = 5
// Point B Which of the following assertions are
X=X -y; true at which point(s) in the code?
z++; Choose ALWAYS, NEVER, or SOMETIMES.
if (x 1= y) {
// Point C xa<Evi i z == 0
2tz 0 Point A | SOMETIMES | SOMETIMES | ALWAYS
)
Point B | NEVER SOMETIMES | SOMETIMES
// Point D Point C | SOMETIMES | NEVER NEVER
} Point D | SOMETIMES | SOMETIMES | NEVER
// Point E Point E | ALWAYS NEVER SOMETIMES
System.out.println(z);
}
- 19
7 Copyright 2010 by Pearson Education
// BAssumes y >= 0, and returns x"y
public static int pow(int x, int y) {
int prod = 1;
// Point A Which of the following assertions are
while (y > 0) { true at which point(s) in the code?
{{ Rt |  Choose ALWAYS, NEVER, or SOMETIMES.
// Point C N
ity y>0 [yr2==0
Voo Point A | SOMETIMES | SOMETIMES
// Point D
} else { Point B | ALWAYS SOMETIMES
// Point E
prod = prod * x; Point C [ Aways | ALwavs
;;-'Point F Point D | ALWAYS SOMETIMES
) } Point E | ALWAYS NEVER
// Point G
return prod; Point F | SOMETIMES | ALWAYS
} Point G | NEVER ALWAYS

21

™ Copyright 2010 by Pearson Education

while loop variations

reading: 5.1, Appendix D

5 Copyright 2010 by Pearson Education

The do/while loop

* do/while loop: Performs its test at the end of each repetition.
« Guarantees that the loop's {} body will run at least once.

gt
statement(s);
} while (test);

// Example: prompt until correct password is typed
String phrase;
do {
System.out.print ("Type your password: ");
phrase = console.next();
} while ('phrase.equals("abracadabra")) ;

" Copyright 2010 by Pearson Education

do/while question

* Modify the previous Dice program to use do/while.

204 = 6
STt 5 =18
5+ 6 =11
Tk 1 =2
4 +3=17

You won after 5 tries!

» Is do/while a good fit for our past Sentinel program?

™ Copyright 2010 by Pearson Education




bye

break
* break statement: Immediately exits a loop.
« Can be used to write a loop whose test is in the middle.
« The loop's test is often changed to true ("always repeat").
while (true) {
statement(s);
1t (test) =
break;
}
statement(s);
I}
* break is considered to be bad style by some programmers.
26

S Copyright 2010 by Pearson Education

9 Copyright 2010 by Pearson Education

// Rolls two dice until a sum of 7 is reached.
import java.util.*;
public class Dice {
public static void main(String[] args) {
Random rand = new Random();
int tries = 0;
int sum;
do {
int rolll = rand.nextInt(6) + 1; // ome roll
int roll2 = rand.nextInt(6) + 1;
sum = rolll + roll2;
System.out.println(rolll + " + " + roll2 + " = " + sum);
tries++;
} while (sum !'= 7);
System.out.println("You won after " + tries + " tries!");
}
}
] 25
Copyright 2010 by Pearson Education
Scanner console = new Scanner (System.in);
int sum = 0;
while (true) {
System.out.print ("Enter a number (-1 to quit): ");
int number = console.nextInt();
if (number == -1) { // don't add -1 to sum
break;
3}
sum = sum + number; // number != -1 here
}
System.out.println("The total was " + sum);
27




