
hi

bye 1

Copyright 2010 by Pearson Education
1

Building Java Programs
Chapter 5

Lecture 5-1: while Loops,
 Fencepost Algorithms

reading: 5.1, 5.2

Copyright 2010 by Pearson Education
2

A deceptive problem...
  Write a method printNumbers that prints each number

from 1 to a given maximum, separated by commas.

For example, the call:
printNumbers(5)

 should print:
1, 2, 3, 4, 5

Copyright 2010 by Pearson Education
3

Flawed solutions
  public static void printNumbers(int max) {
 for (int i = 1; i <= max; i++) {
 System.out.print(i + ", ");
 }
 System.out.println(); // to end the line of output
 }

  Output from printNumbers(5): 1, 2, 3, 4, 5,

  public static void printNumbers(int max) {
 for (int i = 1; i <= max; i++) {
 System.out.print(", " + i);
 }
 System.out.println(); // to end the line of output
 }

  Output from printNumbers(5): , 1, 2, 3, 4, 5

Copyright 2010 by Pearson Education
4

Fence post analogy
  We print n numbers but need only n - 1 commas.
  Similar to building a fence with wires separated by posts:

  If we use a flawed algorithm that repeatedly places a post +
wire, the last post will have an extra dangling wire.

 for (length of fence) {
 place a post.
 place some wire.
 }

Copyright 2010 by Pearson Education
5

Fencepost loop
  Add a statement outside the loop to place the initial "post."

  Also called a fencepost loop or a "loop-and-a-half" solution.

 place a post.
 for (length of fence - 1) {
 place some wire.
 place a post.
 }

Copyright 2010 by Pearson Education
6

Fencepost method solution
public static void printNumbers(int max) {
 System.out.print(1);
 for (int i = 2; i <= max; i++) {
 System.out.print(", " + i);
 }
 System.out.println(); // to end the line
}

  Alternate solution: Either first or last "post" can be taken out:

public static void printNumbers(int max) {
 for (int i = 1; i <= max - 1; i++) {
 System.out.print(i + ", ");
 }
 System.out.println(max); // to end the line
}

hi

bye 2

Copyright 2010 by Pearson Education
7

Fencepost question
  Write a method printPrimes that prints all prime numbers

up to a given maximum in the following format.

  Example: printPrimes(50) prints
 [2 3 5 7 11 13 17 19 23 29 31 37 41 43 47]

  If the maximum is less than 2, print no output.

  To help you, write a method countFactors which returns
the number of factors of a given integer.
  countFactors(20) returns 6 due to factors 1, 2, 4, 5, 10, 20.

Copyright 2010 by Pearson Education
8

Fencepost answer
public class Primes {
 public static void main(String[] args) {
 printPrimes(50);
 printPrimes(1000);
 }

 // Prints all prime numbers up to the given max.
 public static void printPrimes(int max) {
 System.out.print("[2");
 for (int i = 3; i <= max; i++) {
 if (countFactors(i) == 2) {
 System.out.print(" " + i);
 }
 }
 System.out.println("]");
 }

Copyright 2010 by Pearson Education
9

Fencepost answer, continued
 // Returns how many factors the given number has.
 public static int countFactors(int number) {
 int count = 0;
 for (int i = 1; i <= number; i++) {
 if (number % i == 0) {
 count++; // i is a factor of number
 }
 }
 return count;
 }
}

Copyright 2010 by Pearson Education
10

while loops
reading: 5.1

Copyright 2010 by Pearson Education
11

Categories of loops
  definite loop: Executes a known number of times.

  The for loops we have seen are definite loops.

  Print "hello" 10 times.
  Find all the prime numbers up to an integer n.
  Print each odd number between 5 and 127.

  indefinite loop: One where the number of times its body
repeats is not known in advance.

  Prompt the user until they type a non-negative number.
  Print random numbers until a prime number is printed.
  Repeat until the user has types "q" to quit.

Copyright 2010 by Pearson Education
12

The while loop
  while loop: Repeatedly executes its

body as long as a logical test is true.

 while (test) {
 statement(s);
 }

  Example:

 int num = 1; // initialization
 while (num <= 200) { // test
 System.out.print(num + " ");
 num = num * 2; // update
 }

 // output: 1 2 4 8 16 32 64 128

hi

bye 3

Copyright 2010 by Pearson Education
13

Example while loop
// finds a number's first factor other than 1
Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int number = console.nextInt();

int factor = 2;
while (n % factor != 0) {
 factor++;
}
System.out.println("First factor is " + factor);

  while is better than for because we don't know how many
times we will need to increment to find the factor

Copyright 2010 by Pearson Education
14

for vs. while loops
  The for loop is just a specialized form of the while loop.

  The following loops are equivalent:

 for (int num = 1; num <= 200; num = num * 2) {
 System.out.print(num + " ");

 }

 // actually, not a very compelling use of a while loop
 // (a for loop is better because the # of reps is definite)
 int num = 1;
 while (num <= 200) {

 System.out.print(num + " ");
 num = num * 2;
 }

Copyright 2010 by Pearson Education
15

  sentinel: A value that signals the end of user input.
  sentinel loop: Repeats until a sentinel value is seen.

  Example: Write a program that prompts the user for
numbers until the user types 0, then outputs their sum.
  (In this case, 0 is the sentinel value.)

 Enter a number (0 to quit): 10
 Enter a number (0 to quit): 20
 Enter a number (0 to quit): 30
 Enter a number (0 to quit): 0
 The sum is 60

Sentinel values

Copyright 2010 by Pearson Education
16

Flawed sentinel solution
  What's wrong with this solution?

Scanner console = new Scanner(System.in);
int sum = 0;
int number = 1; // "dummy value", anything but 0

while (number != 0) {
 System.out.print("Enter a number (0 to quit): ");
 number = console.nextInt();
 sum = sum + number;
}

System.out.println("The total is " + sum);

Copyright 2010 by Pearson Education
17

Changing the sentinel value
  Modify your program to use a sentinel value of -1.

  Example log of execution:

 Enter a number (-1 to quit): 15
 Enter a number (-1 to quit): 25
 Enter a number (-1 to quit): 10
 Enter a number (-1 to quit): 30
 Enter a number (-1 to quit): -1
 The total is 80

Copyright 2010 by Pearson Education
18

Changing the sentinel value
  To see the problem, change the sentinel's value to -1:

Scanner console = new Scanner(System.in);
int sum = 0;
int number = 1; // "dummy value", anything but -1

while (number != -1) {
 System.out.print("Enter a number (-1 to quit): ");
 number = console.nextInt();
 sum = sum + number;
}

System.out.println("The total is " + sum);

  Now the solution produces the wrong output. Why?
The total was 79

hi

bye 4

Copyright 2010 by Pearson Education
19

The problem with our code
  Our code uses a pattern like this:

sum = 0.
while (input is not the sentinel) {
 prompt for input; read input.
 add input to the sum.
}

  On the last pass, the sentinel -1 is added to the sum:
 prompt for input; read input (-1).
 add input (-1) to the sum.

  This is a fencepost problem.
  Must read N numbers, but only sum the first N-1 of them.

Copyright 2010 by Pearson Education
20

A fencepost solution
sum = 0.
prompt for input; read input. // place a "post"

while (input is not the sentinel) {
 add input to the sum. // place a "wire"
 prompt for input; read input. // place a "post"
}

  Sentinel loops often utilize a fencepost "loop-and-a-half"
style solution by pulling some code out of the loop.

Copyright 2010 by Pearson Education
21

Correct code
Scanner console = new Scanner(System.in);
int sum = 0;

// pull one prompt/read ("post") out of the loop
System.out.print("Enter a number (-1 to quit): ");
int number = console.nextInt();

while (number != -1) {
 sum = sum + number; // moved to top of loop
 System.out.print("Enter a number (-1 to quit): ");
 number = console.nextInt();
}

System.out.println("The total is " + sum);

Copyright 2010 by Pearson Education
22

Sentinel as a constant
public static final int SENTINEL = -1;
...
Scanner console = new Scanner(System.in);
int sum = 0;

// pull one prompt/read ("post") out of the loop
System.out.print("Enter a number (" + SENTINEL +
 " to quit): ");
int number = console.nextInt();

while (number != SENTINEL) {
 sum = sum + number; // moved to top of loop
 System.out.print("Enter a number (" + SENTINEL +
 " to quit): ");
 number = console.nextInt();
}

System.out.println("The total is " + sum);

