
5/27/10

1

Copyright 2010 by Pearson Education

Building Java Programs

Chapter 9
Lecture 9-1: Inheritance

reading: 9.1

Copyright 2010 by Pearson Education

A simulation world with animal objects with behavior:
eat eating food
fight animal fighting
getColor color to display
getMove movement
toString letter to display

You must implement:
Ant

Bird

Hippo

Vulture

Husky (creative)

Critters

5/27/10

2

Copyright 2010 by Pearson Education
3

Testing critters
  Focus on one specific critter of one specific type

  Only spawn 1 of each animal, for debugging

  Make sure your fields update properly
  Use println statements to see field values

  Look at the behavior one step at a time
  Use "Tick" rather than "Go"

Copyright 2010 by Pearson Education
4

Critter exercise: Snake
Method Behavior

constructor public Snake()

eat Never eats
fight always forfeits
getColor black

getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5
E, ...

toString "S"

5/27/10

3

Copyright 2010 by Pearson Education
5

Determining necessary fields
  Information required to decide what move to make?

  Direction to go in
  Length of current cycle
  Number of moves made in current cycle

  Remembering things you've done in the past:
  an int counter?
  a boolean flag?

Copyright 2010 by Pearson Education
6

Snake solution
import java.awt.*; // for Color
public class Snake extends Critter {
 private int length; // # steps in current horizontal cycle
 private int step; // # of cycle's steps already taken

 public Snake() {
 length = 1;
 step = 0;
 }

 public Direction getMove() {
 step++;
 if (step > length) { // cycle was just completed
 length++;
 step = 0;
 return Direction.SOUTH;
 } else if (length % 2 == 1) {
 return Direction.EAST;
 } else {
 return Direction.WEST;
 }
 }

 public String toString() {
 return "S";
 }
}

5/27/10

4

Copyright 2010 by Pearson Education
7

Law firm employee analogy
  common rules: hours, vacation, benefits, regulations ...

  all employees attend a common orientation to learn general
company rules

  each employee receives a 20-page manual of common rules

  each subdivision also has specific rules:
  employee receives a smaller (1-3 page) manual of these rules
  smaller manual adds some new rules and also changes some

rules from the large manual

Copyright 2010 by Pearson Education
8

Employee regulations
  Consider the following employee regulations:

  Employees work 40 hours / week.

  Employees make $40,000 per year, except legal secretaries who
make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

  Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

  Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

  Each type of employee has some unique behavior:
  Lawyers know how to sue.

  Marketers know how to advertise.

  Secretaries know how to take dictation.

  Legal secretaries know how to prepare legal documents.

5/27/10

5

Copyright 2010 by Pearson Education
9

An Employee class
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

  Exercise: Implement class Secretary, based on the previous
employee regulations. (Secretaries can take dictation.)

Copyright 2010 by Pearson Education
10

Redundant Secretary class
// A redundant class to represent secretaries.
public class Secretary {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

5/27/10

6

Copyright 2010 by Pearson Education
11

Desire for code-sharing
•  takeDictation is the only unique behavior in Secretary.

•  We'd like to be able to say:

// A class to represent secretaries.
public class Secretary {
 <copy all the contents from the Employee class>

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2010 by Pearson Education
12

Inheritance
  inheritance: A way to form new classes based on existing

classes, taking on their attributes/behavior.
  a way to group related classes
  a way to share code between two or more classes

  One class can extend another, absorbing its data/behavior.
  superclass: The parent class that is being extended.
  subclass: The child class that extends the superclass and

inherits its behavior.
  Subclass gets a copy of every field and method from superclass

5/27/10

7

Copyright 2010 by Pearson Education
13

Inheritance syntax
 public class <name> extends <superclass> {

  Example:

 public class Secretary extends Employee {
 ...
 }

  By extending Employee, each Secretary object now:
  receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

  can be treated as an Employee by client code (seen later)

Copyright 2010 by Pearson Education
14

Improved Secretary code
// A class to represent secretaries.
public class Secretary extends Employee {
 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

  Now we only write the parts unique to each type.
  Secretary inherits getHours, getSalary, getVacationDays,

and getVacationForm methods from Employee.
  Secretary adds the takeDictation method.

5/27/10

8

Copyright 2010 by Pearson Education
15

Implementing Lawyer
  Consider the following lawyer regulations:

  Lawyers who get an extra week of paid vacation (a total of 3).
  Lawyers use a pink form when applying for vacation leave.
  Lawyers have some unique behavior: they know how to sue.

  Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

Copyright 2010 by Pearson Education
16

Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {
 // overrides getVacationForm from Employee class
 public String getVacationForm() {
 return "pink";
 }

 // overrides getVacationDays from Employee class
 public int getVacationDays() {
 return 15; // 3 weeks vacation
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

–  Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

5/27/10

9

Copyright 2010 by Pearson Education
17

Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }
}

Copyright 2010 by Pearson Education
18

Levels of inheritance
  Multiple levels of inheritance in a hierarchy are allowed.

  Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

 public class LegalSecretary extends Secretary {
 ...

 }

  Exercise: Complete the LegalSecretary class.

5/27/10

10

Copyright 2010 by Pearson Education
19

LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
 public void fileLegalBriefs() {
 System.out.println("I could file all day!");
 }

 public double getSalary() {
 return 45000.0; // $45,000.00 / year
 }
}

Copyright 2010 by Pearson Education
20

Changes to common behavior
  Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
  The base employee salary is now $50,000.
  Legal secretaries now make $55,000.
  Marketers now make $60,000.

  We must modify our code to reflect this policy change.

5/27/10

11

Copyright 2010 by Pearson Education
21

Modifying the superclass
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }

 ...
}

  Are we finished?

  The Employee subclasses are still incorrect.
  They have overridden getSalary to return other values.

Copyright 2010 by Pearson Education
22

An unsatisfactory solution
public class LegalSecretary extends Secretary {
 public double getSalary() {
 return 55000.0;
 }
 ...
}

public class Marketer extends Employee {
 public double getSalary() {
 return 60000.0;
 }
 ...
}

  Problem: The subclasses' salaries are based on the Employee
salary, but the getSalary code does not reflect this.

5/27/10

12

Copyright 2010 by Pearson Education
23

Calling overridden methods
•  Subclasses can call overridden methods with super

 super.<method>(<parameters>)

–  Example:

 public class LegalSecretary extends Secretary {
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.0;
 }
 ...
 }

–  Exercise: Modify Lawyer and Marketer to use super.

Copyright 2010 by Pearson Education
24

Improved subclasses
public class Lawyer extends Employee {
 public String getVacationForm() {
 return "pink";
 }

 public int getVacationDays() {
 return super.getVacationDays() + 5;
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return super.getSalary() + 10000.0;
 }
}

