
5/27/10

1

Copyright 2010 by Pearson Education

Building Java Programs

Chapter 9
Lecture 9-1: Inheritance

reading: 9.1

Copyright 2010 by Pearson Education

A simulation world with animal objects with behavior:
eat eating food
fight animal fighting
getColor color to display
getMove movement
toString letter to display

You must implement:
Ant

Bird

Hippo

Vulture

Husky (creative)

Critters

5/27/10

2

Copyright 2010 by Pearson Education
3

Testing critters
  Focus on one specific critter of one specific type

  Only spawn 1 of each animal, for debugging

  Make sure your fields update properly
  Use println statements to see field values

  Look at the behavior one step at a time
  Use "Tick" rather than "Go"

Copyright 2010 by Pearson Education
4

Critter exercise: Snake
Method Behavior

constructor public Snake()

eat Never eats
fight always forfeits
getColor black

getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5
E, ...

toString "S"

5/27/10

3

Copyright 2010 by Pearson Education
5

Determining necessary fields
  Information required to decide what move to make?

  Direction to go in
  Length of current cycle
  Number of moves made in current cycle

  Remembering things you've done in the past:
  an int counter?
  a boolean flag?

Copyright 2010 by Pearson Education
6

Snake solution
import java.awt.*; // for Color
public class Snake extends Critter {
 private int length; // # steps in current horizontal cycle
 private int step; // # of cycle's steps already taken

 public Snake() {
 length = 1;
 step = 0;
 }

 public Direction getMove() {
 step++;
 if (step > length) { // cycle was just completed
 length++;
 step = 0;
 return Direction.SOUTH;
 } else if (length % 2 == 1) {
 return Direction.EAST;
 } else {
 return Direction.WEST;
 }
 }

 public String toString() {
 return "S";
 }
}

5/27/10

4

Copyright 2010 by Pearson Education
7

Law firm employee analogy
  common rules: hours, vacation, benefits, regulations ...

  all employees attend a common orientation to learn general
company rules

  each employee receives a 20-page manual of common rules

  each subdivision also has specific rules:
  employee receives a smaller (1-3 page) manual of these rules
  smaller manual adds some new rules and also changes some

rules from the large manual

Copyright 2010 by Pearson Education
8

Employee regulations
  Consider the following employee regulations:

  Employees work 40 hours / week.

  Employees make $40,000 per year, except legal secretaries who
make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

  Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

  Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

  Each type of employee has some unique behavior:
  Lawyers know how to sue.

  Marketers know how to advertise.

  Secretaries know how to take dictation.

  Legal secretaries know how to prepare legal documents.

5/27/10

5

Copyright 2010 by Pearson Education
9

An Employee class
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

  Exercise: Implement class Secretary, based on the previous
employee regulations. (Secretaries can take dictation.)

Copyright 2010 by Pearson Education
10

Redundant Secretary class
// A redundant class to represent secretaries.
public class Secretary {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

5/27/10

6

Copyright 2010 by Pearson Education
11

Desire for code-sharing
•  takeDictation is the only unique behavior in Secretary.

•  We'd like to be able to say:

// A class to represent secretaries.
public class Secretary {
 <copy all the contents from the Employee class>

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2010 by Pearson Education
12

Inheritance
  inheritance: A way to form new classes based on existing

classes, taking on their attributes/behavior.
  a way to group related classes
  a way to share code between two or more classes

  One class can extend another, absorbing its data/behavior.
  superclass: The parent class that is being extended.
  subclass: The child class that extends the superclass and

inherits its behavior.
  Subclass gets a copy of every field and method from superclass

5/27/10

7

Copyright 2010 by Pearson Education
13

Inheritance syntax
 public class <name> extends <superclass> {

  Example:

 public class Secretary extends Employee {
 ...
 }

  By extending Employee, each Secretary object now:
  receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

  can be treated as an Employee by client code (seen later)

Copyright 2010 by Pearson Education
14

Improved Secretary code
// A class to represent secretaries.
public class Secretary extends Employee {
 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

  Now we only write the parts unique to each type.
  Secretary inherits getHours, getSalary, getVacationDays,

and getVacationForm methods from Employee.
  Secretary adds the takeDictation method.

5/27/10

8

Copyright 2010 by Pearson Education
15

Implementing Lawyer
  Consider the following lawyer regulations:

  Lawyers who get an extra week of paid vacation (a total of 3).
  Lawyers use a pink form when applying for vacation leave.
  Lawyers have some unique behavior: they know how to sue.

  Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

Copyright 2010 by Pearson Education
16

Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {
 // overrides getVacationForm from Employee class
 public String getVacationForm() {
 return "pink";
 }

 // overrides getVacationDays from Employee class
 public int getVacationDays() {
 return 15; // 3 weeks vacation
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

–  Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

5/27/10

9

Copyright 2010 by Pearson Education
17

Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }
}

Copyright 2010 by Pearson Education
18

Levels of inheritance
  Multiple levels of inheritance in a hierarchy are allowed.

  Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

 public class LegalSecretary extends Secretary {
 ...

 }

  Exercise: Complete the LegalSecretary class.

5/27/10

10

Copyright 2010 by Pearson Education
19

LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
 public void fileLegalBriefs() {
 System.out.println("I could file all day!");
 }

 public double getSalary() {
 return 45000.0; // $45,000.00 / year
 }
}

Copyright 2010 by Pearson Education
20

Changes to common behavior
  Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
  The base employee salary is now $50,000.
  Legal secretaries now make $55,000.
  Marketers now make $60,000.

  We must modify our code to reflect this policy change.

5/27/10

11

Copyright 2010 by Pearson Education
21

Modifying the superclass
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }

 ...
}

  Are we finished?

  The Employee subclasses are still incorrect.
  They have overridden getSalary to return other values.

Copyright 2010 by Pearson Education
22

An unsatisfactory solution
public class LegalSecretary extends Secretary {
 public double getSalary() {
 return 55000.0;
 }
 ...
}

public class Marketer extends Employee {
 public double getSalary() {
 return 60000.0;
 }
 ...
}

  Problem: The subclasses' salaries are based on the Employee
salary, but the getSalary code does not reflect this.

5/27/10

12

Copyright 2010 by Pearson Education
23

Calling overridden methods
•  Subclasses can call overridden methods with super

 super.<method>(<parameters>)

–  Example:

 public class LegalSecretary extends Secretary {
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.0;
 }
 ...
 }

–  Exercise: Modify Lawyer and Marketer to use super.

Copyright 2010 by Pearson Education
24

Improved subclasses
public class Lawyer extends Employee {
 public String getVacationForm() {
 return "pink";
 }

 public int getVacationDays() {
 return super.getVacationDays() + 5;
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return super.getSalary() + 10000.0;
 }
}

