
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-1: Classes and Objects

reading: 8.1 - 8.2

Copyright 2010 by Pearson Education
2

A programming problem
� Given a file of cities' (x, y) coordinates,

which begins with the number of cities:

6

50 20

90 60

10 72

74 98

5 136

150 91

� Write a program to draw the cities on a DrawingPanel, then drop
a "bomb" that turns all cities red that are within a given radius:

Blast site x? 100
Blast site y? 100
Blast radius? 75
Kaboom!

Copyright 2010 by Pearson Education
3

A bad solution

Scanner input = new Scanner(new File("cities.txt"));

int cityCount = input.nextInt();

int[] xCoords = new int[cityCount];

int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {

xCoords[i] = input.nextInt(); // read each city

yCoords[i] = input.nextInt();

}

...

� parallel arrays: 2+ arrays with related data at same indexes.

� Considered poor style.

Copyright 2010 by Pearson Education
4

Observations
� The data in this problem is a set of points.

� It would be better stored as Point objects.

� A Point would store a city's x/y data.

� We could compare distances between Points

to see whether the bomb hit a given city.

� Each Point would know how to draw itself.

� The overall program would be shorter and cleaner.

Copyright 2010 by Pearson Education
5

Clients of objects
� client program: A program that uses objects.

� Example: Bomb is a client of DrawingPanel and Graphics.

Bomb.java (client program)

public class Bomb {

main(String[] args) {

new DrawingPanel(...)

new DrawingPanel(...)

...

}

}

DrawingPanel.java (class)

public class DrawingPanel {

...

}

Copyright 2010 by Pearson Education
6

Classes and objects
� class: A program entity that represents either:

1. A program / module, or

2. A template for a new type of objects.

� The DrawingPanel class is a template for creating
DrawingPanel objects.

� object: An entity that combines state and behavior.

� object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

Copyright 2010 by Pearson Education
7

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

Copyright 2010 by Pearson Education
8

Abstraction
� abstraction: A distancing between ideas and details.

� We can use objects without knowing how they work.

� abstraction in an iPod:

� You understand its external behavior (buttons, screen).

� You don't understand its inner details, and you don't need to.

Copyright 2010 by Pearson Education
9

Our task
� In the following slides, we will implement a Point class as

a way of learning about defining classes.

� We will define a type of objects named Point.

� Each Point object will contain x/y data called fields.

� Each Point object will contain behavior called methods.

� Client programs will use the Point objects.

Copyright 2010 by Pearson Education
10

Point objects (desired)
Point p1 = new Point(5, -2);

Point p2 = new Point(); // origin, (0, 0)

� Data in each Point object:

� Methods in each Point object:

how far away the point is from point pdistance(p)

displays the point on a drawing paneldraw(g)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name

Copyright 2010 by Pearson Education
11

Point class as blueprint

� The class (blueprint) will describe how to create objects.
� Each object will contain its own data and methods.

Point class

state:
int x, y

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

draw(Graphics g)

Point object #1

state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2

state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

12
Copyright 2010 by Pearson Education

Object state:
Fields

reading: 8.2

Copyright 2010 by Pearson Education
13

Point class, version 1
public class Point {

int x;

int y;

}

� Save this code into a file named Point.java.

� The above code creates a new type named Point.

� Each Point object contains two pieces of data:

� an int named x, and

� an int named y.

� Point objects do not contain any behavior (yet).

Copyright 2010 by Pearson Education
14

Fields
� field: A variable inside an object that is part of its state.

� Each object has its own copy of each field.

� Declaration syntax:

type name;

� Example:

public class Student {

String name; // each Student object has a

double gpa; // name and gpa field

}

Copyright 2010 by Pearson Education
15

Accessing fields
� Other classes can access/modify an object's fields.

� access: variable.field

� modify: variable.field = value;

� Example:

Point p1 = new Point();

Point p2 = new Point();

System.out.println("the x-coord is " + p1.x); // access

p2.y = 13; // modify

Copyright 2010 by Pearson Education
16

A class and its client
� Point.java is not, by itself, a runnable program.

� A class can be used by client programs.

PointMain.java (client program)

public class PointMain {

main(String args) {

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

...

}

}

Point.java (class of objects)

public class Point {

int x;

int y;

}

2y7x

3y4x

Copyright 2010 by Pearson Education
17

PointMain client example
public class PointMain {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point();

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

System.out.println(p1.x + ", " + p1.y); // 0, 2

// move p2 and then print it

p2.x += 2;

p2.y++;

System.out.println(p2.x + ", " + p2.y); // 6, 1

}

}

�

18
Copyright 2010 by Pearson Education

Object behavior:
Methods

reading: 8.3

Copyright 2010 by Pearson Education
19

Client code redundancy
� Suppose our client program wants to draw Point objects:

// draw each city

Point p1 = new Point();

p1.x = 15;

p1.y = 37;

g.fillOval(p1.x, p1.y, 3, 3);

g.drawString("(" + p1.x + ", " + p1.y + ")", p1.x, p1.y);

� To draw other points, the same code must be repeated.

� We can remove this redundancy using a method.

Copyright 2010 by Pearson Education
20

Eliminating redundancy, v1
� We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.
public static void draw(Point p, Graphics g) {

g.fillOval(p.x, p.y, 3, 3);

g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);

}

� main would call the method as follows:

draw(p1, g);

Copyright 2010 by Pearson Education
21

Problems with static solution

� We are missing a major benefit of objects: code reuse.

� Every program that draws Points would need a draw method.

� The syntax doesn't match how we're used to using objects.

draw(p1, g); // static (bad)

� The point of classes is to combine state and behavior.

� The draw behavior is closely related to a Point's data.

� The method belongs inside each Point object.

p1.draw(g); // inside the object (better)

Copyright 2010 by Pearson Education
22

Instance methods
� instance method (or object method): Exists inside each

object of a class and gives behavior to each object.

public type name(parameters) {

statements;

}

� same syntax as static methods, but without static keyword

Example:

public void shout() {

System.out.println("HELLO THERE!");

}

Copyright 2010 by Pearson Education
23

Instance method example
public class Point {

int x;

int y;

// Draws this Point object with the given pen.

public void draw(Graphics g) {

...

}

}

� The draw method no longer has a Point p parameter.

� How will the method know which point to draw?

� How will the method access that point's x/y data?

Copyright 2010 by Pearson Education
24

� Each Point object has its own copy of the draw method, which

operates on that object's state:

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

p1.draw(g);

p2.draw(g);

public void draw(Graphics g) {

// this code can see p1's x and y

}

Point objects w/ method

2y7x

3y4x

public void draw(Graphics g) {

// this code can see p2's x and y

}

p2

p1

Copyright 2010 by Pearson Education
25

The implicit parameter

� implicit parameter:

The object on which an instance method is called.

� During the call p1.draw(g);

the object referred to by p1 is the implicit parameter.

� During the call p2.draw(g);

the object referred to by p2 is the implicit parameter.

� The instance method can refer to that object's fields.

� We say that it executes in the context of a particular object.

� draw can refer to the x and y of the object it was called on.

Copyright 2010 by Pearson Education
26

Point class, version 2
public class Point {

int x;

int y;

// Changes the location of this Point object.

public void draw(Graphics g) {

g.fillOval(x, y, 3, 3);

g.drawString("(" + x + ", " + y + ")", x, y);

}

}

� Each Point object contains a draw method that draws that

point at its current x/y position.

Copyright 2010 by Pearson Education
27

Class method questions
� Write a method translate that changes a Point's location

by a given dx, dy amount.

� Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

Use the formula:

� Modify the Point and client code to use these methods.

() ()2

12

2

12
yyxx −+−

Copyright 2010 by Pearson Education
28

Class method answers
public class Point {

int x;

int y;

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}
}

