
1 of 14

CSE 142 Sample Final Exam #4
(based on Winter 2008's final)

1. Array Mystery
Consider the following method:
public static void arrayMystery(int[] a) {
 for (int i = a.length - 1; i >= 0; i--) {
 if (a[i] == a[a.length - i - 1]) {
 a[i]++;
 a[a.length - i - 1]++;
 }
 }
}

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes
if the integer array in the left-hand column is passed as a parameter to it.

Original Contents of Array Final Contents of Array

int[] a1 = {1, 8, 3, 8, 7};
arrayMystery(a1);

int[] a2 = {4, 0, 0, 4, 0, 0, 4, 0};
arrayMystery(a2);

int[] a3 = {9, 8, 7, 6, 4, 6, 2, 9, 9};
arrayMystery(a3);

int[] a4 = {42};
arrayMystery(a4);

int[] a5 = {5, 5, 5, 6, 5, 5, 5};
arrayMystery(a5);

2 of 14

2. Reference Semantics Mystery
The following program produces 4 lines of output. Write the output below, as it would appear on the console.
import java.util.*; // for Arrays class

public class ReferenceMystery {
 public static void main(String[] args) {
 int x = 0;
 int[] a = new int[2];
 mystery(x, a);
 System.out.println(x + " " + Arrays.toString(a));
 x++;
 a[1] = a.length;
 mystery(x, a);
 System.out.println(x + " " + Arrays.toString(a));
 }

 public static void mystery(int x, int[] list) {
 list[x]--;
 x++;
 System.out.println(x + " " + Arrays.toString(list));
 }
}

3 of 14

3. Inheritance Mystery
Assume that the following classes have been defined:

public class Brian extends Lois {
 public void b() {
 a();
 System.out.print("Brian b ");
 }

 public String toString() {
 return "Brian";
 }
}

public class Lois extends Meg {
 public void a() {
 System.out.print("Lois a ");
 super.a();
 }

 public void b() {
 System.out.print("Lois b ");
 }
}

public class Meg {
 public void a() {
 System.out.print("Meg a ");
 }

 public void b() {
 System.out.print("Meg b ");
 }

 public String toString() {
 return "Meg";
 }
}

public class Stewie extends Brian {
 public void a() {
 super.a();
 System.out.print("Stewie a ");
 }

 public String toString() {
 return super.toString() + " Stewie";
 }
}

Given the classes above, what output is produced by the following code?
Meg[] elements = {new Lois(), new Stewie(), new Meg(), new Brian()};
for (int i = 0; i < elements.length; i++) {
 elements[i].a();
 System.out.println();
 elements[i].b();
 System.out.println();
 System.out.println(elements[i]);
 System.out.println();
}

4 of 14

4. File Processing
Write a static method named tokenStats that accepts as a parameter a Scanner containing a series of tokens. It
should print out the sum of all the tokens that are legal integers, the sum of all the tokens that are legal doubles but not
integers, and the total number of tokens of any kind. For example, if a Scanner called data contains the following
tokens:
3 3.14 10 squid 10.x 6.0

Then the call of tokenStats(data); should print the following output:
integers: 13
real numbers: 9.14
total tokens: 6

If the Scanner has no tokens, the method should print:
integers: 0
real numbers: 0.0
total tokens: 0

5 of 14

5. File Processing
Write a static method named pizza that accepts as its parameter a Scanner for an input file. Imagine that a college
dorm room contains several boxes of leftover pizza. A complete pizza has 8 slices. The pizza boxes left in the room
each contain either an entire pizza, half a pizza (4 slices), or a single slice. Your method's task is to figure out the
fewest boxes needed to store all leftover pizza, if all the partial pizzas were consolidated together as much as possible.

Your pizza method will read lines from its input Scanner where each line of data represents the contents of the
pizza boxes in one dorm room. These contents are written as "whole", "half", or "slice" in either upper or lower
case, separated by at least one space. You should print to the console the number of pizza boxes necessary to store all
the slices of pizza out of the total. You must use a whole number of boxes. For example, if there are 10 total slices of
pizza in a dorm room, 2 pizza boxes are needed: one for the first whole pizza, and one for the final 2 slices. Note that
some lines might be blank, meaning that the dorm room contains no pizzas; output for such a case is shown below.

For example, consider the following input file representing 5 dorm rooms (note that the fourth is blank):
slice half slice whole whole half half half
whole HALF WhoLE half WHOLE WhOlE Slice half sLICe halF
WHOLE slice WHOLE SLICE whole SLICE whole slice WHOLE half

slice

For the input above, your method should produce the following output:
5 / 8 pizza boxes used
7 / 10 pizza boxes used
6 / 10 pizza boxes used
0 / 0 pizza boxes used
1 / 1 pizza boxes used

The format of your output must exactly match that shown above.
Assume the Scanner contains at least 1 line of input, and that no line will contain tokens other than whole/half/slice.

6 of 14

6. Array Programming
Write a static method named sweep that accepts an array of integers as a parameter and performs a single "sweep"
over the array from lowest to highest index, comparing adjacent elements. If a pair of adjacent elements are out of
order (if the element at the lower index has a greater value than the element at the higher index), your method should
swap them. For example, in an array of 6 elements, your method first examines elements at indexes 0-1, then 1-2,
then 2-3, 3-4, and 4-5, swapping if they are out of order. One side effect of this method is that the single element with
the largest value will be moved into the final index of the array. (Repeated "sweeping" can be used to sort an array.)

If your method ends up swapping any elements, it should return true to indicate that the array was changed.
Otherwise (if the array was already in ascending order before the sweep), it should return false.

The table below shows calls to your method and the array contents after the method is finished executing:

Array / Call Contents of Array After Call Value Returned
int[] a1 = {1, 6, 2, 7, 3, 6, 4};
sweep(a1);

{1, 2, 6, 3, 6, 4, 7} true

int[] a2 = {9, 4, 2, 1, 3, 12, 14, 6, 8};
sweep(a2);

{4, 2, 1, 3, 9, 12, 6, 8, 14} true

int[] a3 = {3, 4, 8, 2, 1, 8, 8, 4, 12};
sweep(a3);

{3, 4, 2, 1, 8, 8, 4, 8, 12} true

int[] a4 = {-1, -4, 17, 4, -1};
sweep(a4);

{-4, -1, 4, -1, 17} true

int[] a5 = {2, 3, 5, 7, 11, 13};
sweep(a5);

{2, 3, 5, 7, 11, 13} false

int[] a6 = {42};
sweep(a6);

{42} false

You may assume that the array contains at least one element (its length is at least 1). Do not make assumptions about
the values of the elements in the array; they could be very large or small, etc.

7 of 14

7. Array Programming
Write a static method named hasMirrorTwice that accepts two arrays of integers a1 and a2 as parameters and
returns true if a1 contains all the elements of a2 in reverse order at least twice (and false otherwise). For example,
if a2 stores the elements {1, 2, 3} and a1 stores the elements {6, 3, 2, 1, 4, 1, 3, 2, 1, 5}, your
method would return true.

Assume that both arrays passed to your method will have a length of at least 1. This means that the shortest possible
mirror will be of length 1, representing a single element (which is its own mirror). A sequence that is a palindrome
(the same forwards as backwards) is considered its own mirror and should be included in your computations. For
example, if a1 is {6, 1, 2, 1, 4, 1, 2, 1, 5} and a2 is {1, 2, 1}, your method should return true. The
two occurrences of the mirror might overlap, as shown in the fourth sample call below.

The following table shows some calls to your method and their expected results:

Array Returned Value
int[] a1 = {6, 1, 2, 1, 3, 1, 3, 2, 1, 5};
int[] a2 = {1, 2};

hasMirrorTwice(a1, a2) returns true

int[] a3 = {5, 8, 4, 18, 5, 42, 4, 8, 5, 5};
int[] a4 = {4, 8, 5};

hasMirrorTwice(a3, a4) returns false

int[] a5 = {6, 3, 42, 18, 12, 5, 3, 42, 3, 42};
int[] a6 = {42, 3};

hasMirrorTwice(a5, a6) returns true

int[] a7 = {6, 1, 2, 4, 2, 1, 2, 4, 2, 1, 5};
int[] a8 = {1, 2, 4, 2, 1};

hasMirrorTwice(a7, a8) returns true

int[] a9 = {0, 0};
int[] aa = {0};

hasMirrorTwice(a9, aa) returns true

int[] ab = {8, 9, 2, 1};
int[] ac = {5, 7, 1, 2, 9, 8};

hasMirrorTwice(ab, ac) returns false

Do not modify the contents of the arrays passed to your method as parameters.

8 of 14

8. Critters
Write a class Crab that extends the Critter class from the Critters assignment, along with its movement behavior.
Crab objects move in the following repeating pattern:

• west 1 time, east 2 times
• west 3 times, east 4 times
• west 5 times, east 6 times
• west 7 times, east 8 times
• west 7 times, east 6 times
• west 5 times, east 4 times
• west 3 times, east 2 times
• (entire pattern repeats)

Write your complete Crab class below. All other aspects of Crab besides movement use the default critter behavior.
You may add anything needed to your class (fields, constructors, etc.) to implement this behavior appropriately.

Note: You will receive a maximum of only 5 points if you "hard-code" the entire set of movements (by simply
keeping a move counter and using an extremely long chain of if or if/else statements) rather than recognizing the
crab's overall movement pattern.

9 of 14

9. Classes and Objects
Suppose that you are provided with a pre-written class Date as
described at right. (The headings are shown, but not the method
bodies, to save space.) Assume that the fields, constructor, and
methods shown are already implemented. You may refer to them or
use them in solving this problem if necessary.

Write a method named daysTillXmas that will be placed inside
the Date class to become a part of each Date object's behavior.
The daysTillXmas method returns how many days away the
Date object is from Christmas, December 25, in the same year.
For example:

• Dec. 12 is 13 days away from Christmas.
• Nov. 22 is 33 days away (the 8 remaining days in November,

and 25 more to reach 12/25).
• Sep. 3 is 113 days away (the 27 remaining days in September,

the 61 days in October and November, and 25 more to reach
12/25).

Here is an example call of your method that would print 113:
Date d = new Date(9, 3);
System.out.println(d.daysTillXmas()); // 113

Here are more dates and the values that the method should return
when called on Date objects representing them. 12/25 is 0 days
away from itself, and days after 12/25 return a negative value.

• Dec. 25 is 0 days away from Christmas.
• Dec. 26 is -1 days away from Christmas.
• Dec. 31 is -6 days away from Christmas.
• Jan. 1 is 358 days away from Christmas.
• Feb. 14 is 314 days away from Christmas.

Your method should not modify the Date object's state, such as by
changing its day or month field values. You will not receive full
credit if your solution uses 12 if/else statements or explicitly
enumerates the days in each month.

// Each Date object stores a single
// month/day such as September 19.
// This class ignores leap years.

public class Date {
 private int month;
 private int day;

 // Constructs a date with
 // the given month and day.
 public Date(int m, int d)

 // Returns the date's day.
 public int getDay()

 // Returns the date's month.
 public int getMonth()

 // Returns the number of days
 // in this date's month.
 public int daysInMonth()

 // Modifies this date's state
 // so that it has moved forward
 // in time by 1 day, wrapping
 // around into the next month
 // or year if necessary.
 // example: 9/19 -> 9/20
 // example: 9/30 -> 10/1
 // example: 12/31 -> 1/1

 public void nextDay()

 // your method would go here

}

10 of 14

Solutions
1. Array Mystery

Expression
int[] a1 = {1, 8, 3, 8, 7};
arrayMystery(a1);

int[] a2 = {4, 0, 0, 4, 0, 0, 4, 0};
arrayMystery(a2);

int[] a3 = {9, 8, 7, 6, 4, 6, 2, 9, 9};
arrayMystery(a3);

int[] a4 = {42};
arrayMystery(a4);

int[] a5 = {5, 5, 5, 6, 5, 5, 5};
arrayMystery(a5);

Final Contents of Array
[1, 10, 5, 10, 7]

[4, 0, 2, 4, 0, 2, 4, 0]

[11, 8, 7, 8, 6, 8, 2, 9, 11]

[44]

[7, 7, 7, 8, 7, 7, 7]

2. Reference Semantics Mystery
1 [-1, 0]
0 [-1, 0]
2 [-1, 1]
1 [-1, 1]

3. Inheritance Mystery
Lois a Meg a
Lois b
Meg

Lois a Meg a Stewie a
Lois a Meg a Stewie a Brian b
Brian Stewie

Meg a
Meg b
Meg

Lois a Meg a
Lois a Meg a Brian b
Brian

11 of 14

4. File Processing (four solutions shown)

public static void tokenStats(Scanner s) {
 int ints = 0;
 double doubles = 0.0;
 int total = 0;

 while (s.hasNext()) {
 if (s.hasNextInt()) {
 ints += s.nextInt();
 } else if (s.hasNextDouble()) {
 doubles += s.nextDouble();
 } else {
 s.next();
 }
 total++;
 }

 System.out.println("integers: " + ints);
 System.out.println("real numbers: " + doubles);
 System.out.println("total tokens: " + total);
}

5. File Processing (four solutions shown)

public static void pizza(Scanner input) {
 while (input.hasNextLine()) {
 String line = input.nextLine();
 Scanner lineScan = new Scanner(line.toLowerCase());
 double boxes = 0.0;
 int totalBoxes = 0;
 while (lineScan.hasNext()) {
 totalBoxes++;
 String box = lineScan.next();
 if (box.equals("whole")) {
 boxes++; // 1
 } else if (box.equals("half")) {
 boxes += 0.5; // 1/2
 } else { // "slice"
 boxes += 0.125; // 1/8
 }
 }
 System.out.println((int) Math.ceil(boxes) + " / " + totalBoxes +
 " pizza boxes used");
 }
}

public static void pizza(Scanner input) {
 while (input.hasNextLine()) {
 Scanner lineScan = new Scanner(input.nextLine().toLowerCase());
 int slices = 0;
 int totalBoxes = 0;
 while (lineScan.hasNext()) {
 totalBoxes++;
 String box = lineScan.next();
 if (box.equals("whole")) {
 slices += 8;
 } else if (box.equals("half")) {
 slices += 4;
 } else {
 slices++;
 }
 }

 int boxes = slices / 8; // round up to an even box
 if (slices % 8 != 0) {
 boxes++;
 }
 System.out.println(boxes + " / " + totalBoxes + " pizza boxes used");
 }
}

12 of 14

public static void pizza(Scanner input) {
 while (input.hasNextLine()) {
 Scanner lineScan = new Scanner(input.nextLine().toLowerCase());
 int slices = 0;
 int totalBoxes = 0;
 while (lineScan.hasNext()) {
 totalBoxes++;
 String box = lineScan.next();
 if (box.equals("whole")) {
 slices += 8;
 } else if (box.equals("half")) {
 slices += 4;
 } else {
 slices++;
 }
 }

 if (slices % 8 != 0) { // round up to an even box
 slices += (8 - slices % 8);
 }
 System.out.println(slices / 8 + " / " + totalBoxes + " pizza boxes used");
 }
}

public static void pizza(Scanner input) {
 while (input.hasNextLine()) {
 Scanner lineScan = new Scanner(input.nextLine().toLowerCase());
 int slices = 0;
 int halves = 0;
 int wholes = 0;
 int totalBoxes = 0;
 while (lineScan.hasNext()) {
 totalBoxes++;
 String box = lineScan.next();
 if (box.equals("whole")) {
 wholes++;
 } else if (box.equals("half")) {
 halves++;
 } else {
 slices++;
 }
 }

 int boxes = (int) Math.ceil((8*wholes + 4*halves + slices) / 8.0);
 System.out.println(boxes + " / " + totalBoxes + " pizza boxes used");
 }
}

6. Array Programming (two solutions shown)

public static boolean sweep(int[] a) {
 boolean changed = false;
 for (int i = 0; i < a.length - 1; i++) {
 if (a[i] > a[i + 1]) {
 int temp = a[i];
 a[i] = a[i + 1];
 a[i + 1] = temp;
 changed = true;
 }
 }
 return changed;
}

public static boolean sweep(int[] a) {
 int count = 0;
 for (int i = 1; i < a.length; i++) {
 int temp1 = a[i];
 int temp2 = a[i - 1];

 if (a[i - 1] > a[i]) {
 a[i - 1] = temp1;
 a[i] = temp2;
 count++;
 }
 }

 if (count > 0) {
 return true;
 } else {
 return false;
 }
}

13 of 14

7. Array Programming (four solutions shown)

public static boolean hasMirrorTwice(int[] a1, int[] a2) {
 int mirrorCount = 0;
 for (int i = 0; i <= a1.length - a2.length; i++) {
 int count = 0;
 for (int j = 0; j < a2.length; j++) {
 if (a1[i + j] == a2[a2.length - 1 - j]) {
 count++;
 }
 }
 if (count >= a2.length) {
 mirrorCount++;
 }
 }

 return mirrorCount >= 2;
}

public static boolean hasMirrorTwice(int[] a1, int[] a2) {
 int mirrorCount = 0;
 for (int i = a2.length - 1; i < a1.length; i++) {
 int count = 0;
 for (int j = 0; j < a2.length; j++) {
 if (a1[i - j] == a2[j]) {
 count++;
 }
 }
 if (count >= a2.length) {
 mirrorCount++;
 }
 }

 return mirrorCount >= 2;
}

public static boolean hasMirrorTwice(int[] a1, int[] a2) {
 // copy/reverse a2 into a3
 int[] a3 = new int[a2.length];
 for (int i = 0; i < a2.length; i++) {
 a3[i] = a2[a2.length - 1 - i];
 }

 int mirrorCount = 0;
 for (int i = 0; i <= a1.length - a3.length; i++) {
 int count = 0;
 for (int j = 0; j < a3.length; j++) {
 if (a1[i + j] == a3[j]) {
 count++;
 }
 }
 if (count >= a3.length) {
 mirrorCount++;
 }
 }

 if (mirrorCount >= 2) {
 return true;
 } else {
 return false;
 }
}

public static boolean hasMirrorTwice(int[] a1, int[] a2) {
 int mirrorCount = 0;
 for (int i = a1.length - 1; i >= 0; i--) {
 int count = 0;
 for (int j = 0; j < a2.length; j++) {
 if (i + j < a1.length && a1[i + j] == a2[a2.length - 1 - j]) {
 count++;
 }
 }
 if (count >= a2.length) {
 mirrorCount++;
 }
 }

 return mirrorCount >= 2;
}

14 of 14

8. Critters (two solutions shown)

public class Crab extends Critter {
 private int max = 1;
 private int moves = 0;
 private boolean wider = true;

 public Direction getMove() {
 if (moves == max) {
 moves = 0;
 if (wider) {
 max++;
 } else {
 max--;
 }
 if (max == 8 || max == 1) {
 wider = !wider;
 }
 }

 moves++;
 if (max % 2 == 0) {
 return Direction.EAST;
 } else {
 return Direction.WEST;
 }
 }
}

public class Crab extends Critter {
 private int moves = 0;

 public Direction getMove() {
 moves++;
 if (moves == 64) { // 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36
 moves = 1; // 36 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 64
 }

 int sum = 0;
 for (int i = 1; i <= 8; i++) {
 if (moves >= sum && moves <= sum + i) {
 if (i % 2 == 0) { return Direction.EAST; }
 else { return Direction.WEST; }
 }
 sum += i;
 }

 for (int i = 7; i >= 2; i--) {
 if (moves >= sum && moves <= sum + i) {
 if (i % 2 == 0) { return Direction.EAST; }
 else { return Direction.WEST; }
 }
 sum += i;
 }
 return Direction.CENTER; // it will never reach here
 }
}

9. Objects (two solutions shown)
public int daysTillXmas() {
 int days = 0;
 Date copy = new Date(month, day);
 while (copy.month < 12) {
 // get to December
 days += copy.daysInMonth();
 copy.month++;
 }
 return days + 25 - day;
}

public int daysTillXmas() {
 if (month == 12) {
 return 25 - day;
 } else {
 int days = 0;
 Date copy = new Date(month, day);
 while (copy.month != 12 || copy.day != 25) {
 // get to December
 copy.nextDay();
 days++;
 }
 return days;
 }
}

