
Week 8

Classes, Objects and lists
Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

s
• like Javaᔞs arrays (but way cooler)

• declaring:

•
 or

•
• accessing/modifying:

•

list indexing

• lists can be indexed with positive or negative
numbers (weᔞve seen this before!)

index

value

index

list slicing

• lists can be printed (or converted to string with

)

• returns a listᔞs length

5

OOP and Python
• Python was built as a procedural language

– OOP exists and works fine, but feels a bit more "tacked on"

– Java probably does classes better than Python (gasp)

6

Defining a Class
• Declaring a class:

class Name:
 ...

– class name is capitalized (e.g. Point)

– saved into a file named name.py (filename is lowercase)

7

Fields
• Declaring a field:

name = value

– Example:
class Point:
 x = 0
 y = 0

point.py

1
2
3

class Point:
 x = 0
 y = 0

8

Using a Class
from name import *

– client programs must import the classes they use
– the file name (lowercase), not class name, is used

point_main.py

1
2
3
4
5
6
7
8

from point import *

main
p1 = Point()
p1.x = 7
p1.y = -3

...

9

"Implicit" Parameter (self)
• Java object methods refer to the object's fields implicitly:

public void translate(int dx, int dy) {
 x += dx;
 y += dy; // change this object's x/y
}

• Python's implicit parameter is named self
– self must be the first parameter of any object method
– access the object's fields as self.field

def translate(self, dx, dy):
 self.x += dx
 self.y += dy

10

Methods
def name(self [, parameter, ..., parameter]):
 statements

– Example:
class Point:
 def translate(self, dx, dy):
 self.x += dx
 self.y += dy
 ...

– Exercise: Write the following methods in class Point:
• set_location
• draw
• distance

11

Exercise Answer
point.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

from math import *

class Point:
 x = 0
 y = 0

 def set_location(self, x, y):
 self.x = x
 self.y = y

 def draw(self, panel):
 panel.canvas.create_oval(self.x, self.y, \
 self.x + 3, self.y + 3)
 panel.canvas.create_text(self.x, self.y, \
 text=str(self), anchor="sw")

 def distance(self, other):
 dx = self.x - other.x
 dy = self.y - other.y
 return sqrt(dx * dx + dy * dy)

12

Initializing Objects
• Right now, clients must initialize Points like this:

p = Point()
p.x = 3
p.y = -5

• We'd prefer to be able to say:

p = Point(3, -5)

13

Constructors
def __init__(self [, parameter, ..., parameter]):
 statements

– a constructor is a special method with the name __init__
that initializes the state of an object

– Example:

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

14

More About Fields

– fields can be declared directly inside class,
or just in the constructor as shown here (more common)

point.py

1
2
3
4
5

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 ...

>>> p = Point(5, -2)
>>> p.x
5
>>> p.y
-2

15

Printing Objects
• By default, Python doesn't know how to print an object:

• We'd like to be able to print a Point object and have its
state shown as the output.

>>> p = Point(5, -2)
>>> print p
<Point instance at 0x00A8A850>

16

Printable Objects: __str__
def __str__(self):

 return string

– converts an object into a string (like Java toString method)
– invoked automatically when str or print is called

def __str__(self):

 return "(" + str(self.x) + ", " + str(self.y) + ")"

>>> p = Point(5, -2)
>>> print p
(5, -2)
>>> print "The point is " + str(p) + "!"
The point is (5, -2)!

17

Complete Point Class
point.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

from math import *

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def distance_from_origin(self):
 return sqrt(self.x * self.x + self.y * self.y)

 def distance(self, other):
 dx = self.x - other.x
 dy = self.y - other.y
 return sqrt(dx * dx + dy * dy)

 def translate(self, dx, dy):
 self.x += dx
 self.y += dy

 def __str__(self):
 return "(" + str(self.x) + ", " + str(self.y) + ")"

18

Exercise
• Rewrite the Bomb Java program in Python.

– For simplicity, change the console I/O to:

Blast site x? 100
Blast site y? 100
Blast radius? 80

• For extra challenge, modify the program to randomly
choose a city, nuke that city, and also turn red any cities
within the blast radius of 80 px. Don't prompt the console.

19

Python Object Details
• Drawbacks

– Does not have encapsulation like Java (ability to protect fields'
data from access by client code)

– Not easy to have a class with multiple constructors
– Must explicitly declare self parameter in all methods
– Strange names like __str__, __init__

• Benefits
– operator overloading: Define < by writing __lt__ , etc.

http://docs.python.org/ref/customization.html

	
	lists
	list indexing
	list slicing
	
	
	
	
	
	
	
	
	
	
	Printing Objects
	
	
	Exercise
	

