
Week 5

while loops; logic; random numbers; tuples

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

2

while Loops

while test:

statements

>>> n = 91

>>> factor = 2 # find first factor of n

>>> while n % factor != 0:

... factor += 1

...

>>> factor

7

3

while / else

while test:

statements

else:

statements

– Executes the else part if the loop does not enter

– There is also a similar for / else statement

>>> n = 91

>>> while n % 2 == 1:

... n += 1

... else:

... print n, "was even; no loop."

...

92 was even; no loop.

4

bool

• Python's logic type, equivalent to boolean in Java

– True and False start with capital letters

>>> 5 < 10

True

>>> b = 5 < 10

>>> b

True

>>> if b:

... print "The bool value is true"

...

The bool value is true

>>> b = not b

>>> b

False

5

Logical Operators

Operator Example Result

and 2 == 3 and -1 < 5 False

or 2 == 3 or -1 < 5 True

not not -1 < 5 False

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

6

Random Numbers

from random import *

randint(min, max)

– returns a random integer in range [min, max] inclusive

choice(sequence)

– returns a randomly chosen value from the given sequence

• the sequence can be a range, a string, ...

>>> from random import *

>>> randint(1, 5)

2

>>> randint(1, 5)

5

>>> choice(range(4, 20, 2))

16

>>> choice("hello")

'e'

7

Exercise

• Rewrite the Dice program from Java to Python:

2 + 4 = 6

3 + 5 = 8

5 + 6 = 11

1 + 1 = 2

4 + 3 = 7

You won after 5 tries!

8

Tuple

tuple_name = (value, value, ..., value)
– A way of "packing" multiple values into one variable

name, name, ..., name = tuple_name
– "unpacking" a tuple's contents into multiple variables

>>> x = 3

>>> y = -5

>>> p = (x, y, 42)

>>> p

(3, -5, 42)

>>> a, b, c = p

>>> a

3

>>> b

-5

>>> c

42

9

Using Tuples

• Useful for storing multi-dimensional data (e.g. (x, y) points)

• Useful for returning more than one value

>>> p = (42, 79)

>>> from random import *

>>> def roll2():

... die1 = randint(1, 6)

... die2 = randint(1, 6)

... return (die1, die2)

...

>>> d1, d2 = roll2()

>>> d1

6

>>> d2

4

10

Tuple as Parameter

def name((name, name, ..., name), ...):

statements

– Declares tuple as a parameter by naming each of its pieces

>>> def slope((x1, y1), (x2, y2)):

... return (y2 - y1) / (x2 - x1)

...

>>> p1 = (2, 5)

>>> p2 = (4, 11)

>>> slope(p1, p2)

3

11

Tuple as Return

def name(parameters):

statements

return (name, name, ..., name)

>>> from random import *

>>> def roll2():

... die1 = randint(1, 6)

... die2 = randint(1, 6)

... return (die1, die2)

...

>>> d1, d2 = roll2()

>>> d1

6

>>> d2

4

12

Higher Order Functions

• filter(func, sequence) returns all

values in sequence for which func(value)

returns True

>>> def close(p1):

p2 = (0, 0)

return dist(p1, p2) < 7

n = ((1, 3), (4, 45), (65, 5))

>>> print (list(filter(close, n)))

[(1, 3)]

13

Exercise

A python version of your homework 5. Change your haiku intro
message into a haiku about Monty Python.

