
Week 10
Writing Games with Pygame

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on
these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

2

Inheritance
class name(superclass):
 statements
– Example:
class Point3D(Point): # Point3D extends Point
 # add a z field
 ... z = 0

• Python also supports multiple inheritance

class name(superclass, ..., superclass):
 statements

3

Calling Superclass
Methods

• methods: class.method(parameters)
• constructors:class.__init__(parameters)

class Point3D(Point):
 z = 0

 def __init__(self, x, y, z):
 Point.__init__(self, x, y)
 self.z = z

 def translate(self, dx, dy, dz):
 Point.translate(self, dx, dy)
 self.z += dz

4

Pygame
• A set of Python modules to help write games

• Deals with media (pictures, sound) nicely

• Interacts with user nicely (keyboard,
joystick, mouse input)

5

Installing Pygame
• Go to the Pygame web site: http://www.
pygame.org/
– click 'Downloads' at left

– Windows users: under the 'Windows' section,
• click the most recent version
(as of this quarter, that is pygame-1.9.1.win32-
py2.6.msi)

– Mac users: under the 'Macintosh' section,
• click the most recent version
(as of this quarter, pygame-1.9.1release-py2.6-
macosx10.5.zip)

– save file to hard disk

– run file to install it

http://www.pygame.org/

6

Other Resources
• Pygame documentation: http://www.pygame.
org/docs/
– lists every class in Pygame and its useful
behavior

• The Application Programming Interface (API)
– specifies the classes and functions in package

• Search for tutorials

• Experiment!

http://www.pygame.org/docs/
http://www.pygame.org/docs/ref/index.html
http://www.linuxjournal.com/article/7694

7

Our Goal: Pong!
• Implement Pong!

– 800x400 screen

– 10x10 square ball bounces off of any
surface it touches

– two 10x75 paddles move when pressing
Up/Down arrows and W/S

– game displays score on top/center of
screen in a 25px font

8

Initializing a Game
• Import Pygame's relevant classes:

import sys
import pygame
from pygame import *
from pygame.locals import *
from pygame.sprite import *

• Initialize Pygame at the start of your code:

pygame.init()

9

Creating a Window
name = display.set_mode((width, height)[, options])

Example:
screen = display.set_mode((640, 480))

• Options:
FULLSCREEN - use whole screen instead of a
window

DOUBLEBUF - display buffering for smoother
animation

OPENGL - 3D acceleration (don't use
unless needed)

Example:
screen = display.set_mode((1024, 768), FULLSCREEN)

10

Initial Game Program
• An initial, incomplete game file using
Pygame:

pong.py
1
2
3
4
5
6
7
8
9

10
11
12

import pygame
from pygame import *
from pygame.locals import *
from pygame.sprite import *

pygame.init()

set window title
display.set_caption(“Pong")

screen = display.set_mode((1000, 400))

11

Sprites
Next we must define all the sprites found in
the game.

• sprite: A character, enemy, or other object
in a game.
– Sprites can move, animate, collide, and be
acted upon

– Sprites usually consist of an image to draw on
the screen and a bounding rectangle indicating
the sprite's collision area

• Pygame sprites are objects that extend the
Sprite class.

12

Programming a Sprite
class name(Sprite):
 # constructor
 def __init__(self):
 Sprite.__init__(self)
 self.image = image.load("filename")
 self.rect = self.image.get_rect()

 other methods (if any)

– Pre-defined fields in every sprite:
self.image - the image or shape to draw for this
sprite

• images are Surface objects, loaded by image.load
function

self.rect - position and size of where to draw
the image

13

Surface
• In Pygame, every 2D object is an object of
type Surface
– The screen object returned from display.
set_mode(),
each game character, images, etc.

– Useful methods in each Surface object:Method Name Description
fill((red, green, blue)) paints surface in given color

(rgb 0-255)get_width(),
get_height()

returns the dimensions of the
surface

get_rect() returns a Rect object
representing the

x/y/w/h bounding this surfaceblit(src, dest) draws this surface onto
another surface

14

Sprite Example
A class for a mole sprite to be whacked.
class Mole(Sprite):
 def __init__(self):
 Sprite.__init__(self)
 self.image = image.load("mole.gif")
 self.rect = self.image.get_rect()

-What about our Ball?

15

Sprite Groups
name = Group(sprite1, sprite2, ...)
– To draw sprites on screen, they must be put
into a Group

Example:

my_mole = Mole() # create a Mole object
all_sprites = Group(my_mole)

Group methods:
update() - updates every sprite's
appearance
draw(surface) - draws all sprites in group
onto a surface

16

Drawing and Updating
• All Surface and Group objects have an update
method that redraws that object when it
moves or changes.

• Once sprites are drawn onto the screen, you
must call display.update() to see the
changes

my_mole = Mole() # create a Mole object
all_sprites = Group(my_mole)
all_sprites.draw(screen)
display.update() # redraw to see the sprites

17

Doing time!
• Create sprite for the pong ball

• Get it moving!

• Start on paddles

18

Event-Driven Programming
• event: A user interaction with the game,
such as a mouse click, key press, clock
tick, etc.

• event-driven programming: Programs with an
interface that waits for user events and
responds to those events.

• Pygame programs need to write an event loop
that waits for a Pygame event and then
processes it.

19

Event Loop Template
after Pygame's screen has been created
while True:
 name = event.wait() # wait for an event
 if name.type == QUIT:
 pygame.quit() # exit the game
 break # not a big fan
 elif name.type == type:
 code to handle another type of events
 ...

 code to update/redraw the game between events

20

Mouse Clicks
• When the user presses a mouse button, you
get events with a type of MOUSEBUTTONDOWN
and MOUSEBUTTONUP.

– mouse movement is a MOUSEMOTION event

• mouse.get_pos() returns the mouse cursor's
current position as an (x, y) tuple

Example:
ev = event.poll() # or even.wait()
if ev.type == MOUSEBUTTONDOWN:
 # user pressed a mouse button
 x, y = mouse.get_pos()

21

Key Presses
• When the user presses a keyboard key, you
get events with a type of KEYDOWN and then
KEYUP.
– event contains .key field representing what
key was pressed

– Constants for different keys: K_LEFT, K_RIGHT,
K_UP, K_DOWN, K_a - K_z, K_0 - K_9, K_F1 -
K_F12, K_SPACE, K_ESCAPE, K_LSHIFT, K_RSHIFT,
K_LALT, K_RALT, K_LCTRL, K_RCTRL, ...

Example:
ev = event.poll() # or even.wait()
if ev.type == KEYDOWN:
 if ev.key == K_ESCAPE:
 pygame.quit()

22

Collision Detection
• collision detection: Noticing whether one
sprite or object has touched another, and
responding accordingly.
– A major part of game programming

• In Pygame, collision detection is done by
examining sprites, rectangles, and points,
and asking whether they intersect.

23

Rect
• a 2D rectangle associated with each sprite
(.rect field)
– Fields: top, left, bottom, right, center,
centerx, centery, topleft, topright,
bottomleft, bottomright, width, height, size,
...Method Name Description

collidepoint(p) returns True if this Rect
contains the pointcolliderect(rect) returns True if this Rect
contains the rectcontains(rect) returns True if this Rect
contains the othermove(x, y) moves a Rect to a new position

inflate(dx, dy) grow/shrink a Rect in size

union(rect) joins two Rects

24

Collision Example
• Detecting whether a sprite touches the mouse
cursor:

ev = event.wait()
if ev.type == MOUSEBUTTONDOWN:
 if sprite.rect.collidepoint(mouse.get_pos()):
 # then the mouse cursor touches the sprite
 ...

-Write a method of paddles to see if the ball hit it

25

Font
• Text is drawn using a Font object:

name = Font(filename, size)
– Pass None for the file name to use a default
font.

• A Font draws text as a Surface with its
render method:
name.render("text", True, (red, green, blue))

Example:

my_font = Font(None, 16)

text = my_font.render("Hello", True, (0, 0, 0))

26

Displaying Text
• A Sprite can be text by setting that text's
Surface to be its .image property.

Example:
class Banner(Sprite):
 def __init__(self):
 my_font = Font(None, 24)
 self.image = my_font.render("Hello", \
 True, (0, 0, 0))
 self.rect = self.image.get_rect()
 self.rect.center = (250, 170)

27

Exercise
• Implement scoring of points in PyPong.

– Make a sprite to represent the current
scoreboard.
• Draw the score in 72px font, in the top/middle
of the board.

• Draw it in a format such as "0:0".

– Expand the collision detection for the ball:
• If it hits the right wall, it should score a
point for Player 1.

• If it hits the left wall, it should score a
point for Player 2.

28

Sounds
• Loading and playing a sound file:

from pygame.mixer import *

mixer.init() # initialize sound system
mixer.stop() # silence all sounds
Sound("filename").play() # play a sound

• Loading and playing a music file:
music.load("filename") # load bg music file
music.play(loops=0) # play/loop music
 # (-1 loops == infinite)
others: stop, pause, unpause, rewind, fadeout,
queue

29

Further Exploration
• Physics: Sprites that accelerate; gravity;
etc.

• AI: Computer opponents that play
"intelligently"

• Supporting other input devices
– See documentation for Pygame's Joystick module

• Multi-player (local or network)

	Week 10
	Inheritance
	Calling Superclass Methods
	Pygame
	Installing Pygame
	Other Resources
	Our Goal: Pong!
	Initializing a Game
	Creating a Window
	Initial Game Program
	Sprites
	Programming a Sprite
	Surface
	Sprite Example
	Sprite Groups
	Drawing and Updating
	Doing time!
	Event-Driven Programming
	Event Loop Template
	Mouse Clicks
	Key Presses
	Collision Detection
	Rect
	Collision Example
	Font
	Displaying Text
	Exercise
	Sounds
	Further Exploration

