
while loops, random
numbers, tuples

while loops
while test:
 statements

>>> n = 91
>>> factor = 2 # find first factor of n

>>> while n % factor != 0:
... factor += 1
...

>>> factor
7

exercise

• write a function smallest_factor that
takes any integer and returns its smallest
factor

>>> smallest_factor(91)
7

solution

def smallest_factor(n):
 if n < 2:
 return n

 factor = 2
 while n % factor != 0:
 factor += 1

 return factor

bool

• like java’s boolean type

>>> b = 5 < 10
>>> b
True

>>> if b:
... print "The bool value is true"
...
The bool value is true

>>> b = not b
>>> b
False

logical operators

Operator Example Result
and (2 == 3) and (-1 < 5) False
or (2 == 3) or (-1 < 5) True
not not (2 == 3) True

Operator Meaning Example Result

== equals 1 + 1 == 2 True
!= does not equal 3.2 != 2.5 True
< less than 10 < 5 False
> greater than 10 > 5 True
<= less than or equal to 126 <= 100 False
>= greater than or equal to 5.0 >= 5.0 True

exercise

• write a function is_prime that takes any
integer and returns True if it is prime, or
False otherwise

>>> is_prime(11)
True
>>> is_prime(12)
False

solution

def is_prime(n):
 return smallest_factor(n) == n

random numbers

• from random import *

• randint(min, max) returns a random int
in the range [min, max] inclusive

• choice(sequence) returns a randomly
chosen value from a sequence (string,
range, list, tuple...)

tuples
>>> y = -5
>>> p = (3, y, 42)
>>> p
(3, -5, 42)

>>> a, b, c = p
>>> a
3
>>> b
-5
>>> c
42

• can be used to store multiple values in a
single variable

divmod

• divmod(a, b) returns a tuple whose first
value is (a / b), and whose second value is
(a % b)

>>> divmod(20, 7)
(2, 6)

exercise

• write a function roll_dice that rolls two
dice and returns their values as a tuple

>>> roll_dice()
(3, 1)
>>> roll_dice()
(6, 3)

solution

from random import *

def roll_dice():
 roll1 = randint(1, 6)
 roll2 = randint(1, 6)
 return (roll1, roll2)

exercise

• write a function craps that calls roll_dice
repeatedly, until it returns a pair of dice
whose sum are 7 or 11

>>> craps()
rolled 4 + 4 = 8
rolled 3 + 1 = 4
rolled 2 + 2 = 4
rolled 6 + 5 = 11

solution

def craps():
 total = 0 # prime the loop
 while total != 7 and total != 11:
 (roll1, roll2) = roll_dice()
 total = roll1 + roll2
 print "rolled", roll1, "+", roll2, "=", total

exercise

• write a function loaded_dice that always
returns a roll of 7

>>> loaded_dice()
(6, 1)
>>> loaded_dice()
(5, 2)
>>> loaded_dice()
(3, 4)

solution

def loaded_dice():
 roll = randint(1, 6)
 return (roll, 7 - roll)

bonus content!

higher-order functions

• filter(func, sequence) returns all
values in sequence for which func(value)
returns True

>>> filter(is_prime, range(100))
[0, 1, 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97]

