
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-3: Encapsulation, toString

reading: 8.5 - 8.6

self-checks: #13-18, 20-21

exercises: #5, 9, 14

Copyright 2008 by Pearson Education
2

The toString method

reading: 8.6

self-check: #18, 20-21

exercises: #9, 14

Copyright 2008 by Pearson Education
3

Printing objects
 By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);

System.out.println("p: " + p); // p: Point@9e8c34

 We can print a better string (but this is cumbersome):

System.out.println("p: (" + p.x + ", " + p.y + ")");

 We'd like to be able to print the object itself:

// desired behavior

System.out.println("p: " + p); // p: (10, 7)

Copyright 2008 by Pearson Education
4

The toString method

 tells Java how to convert an object into a String

 called when an object is printed/concatenated to a String:

Point p1 = new Point(7, 2);

System.out.println("p1: " + p1);

 If you prefer, you can write .toString() explicitly.

System.out.println("p1: " + p1.toString());

 Every class has a toString, even if it isn't in your code.

 The default is the class's name and a hex (base-16) number:

Point@9e8c34

Copyright 2008 by Pearson Education
5

toString syntax
public String toString() {

code that returns a suitable String;

}

 The method name, return, parameters must match exactly.

 Example:

// Returns a String representing this Point.

public String toString() {

return "(" + x + ", " + y + ")";

}

Copyright 2008 by Pearson Education
6

Client code
// This client program uses the Point class.

public class PointMain {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(7, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: " + p1);

System.out.println("p2: " + p2);

// compute/print each point's distance from the origin

System.out.println("p1's distance from origin: " + p1.distanceFromOrigin());

System.out.println("p2's distance from origin: " + p1.distanceFromOrigin());

// move p1 and p2 and print them again

p1.translate(11, 6);

p2.translate(1, 7);

System.out.println("p1: " + p1);

System.out.println("p2: " + p2);

// compute/print distance from p1 to p2

System.out.println("distance from p1 to p2: " + p1.distance(p2));

}

}

Copyright 2008 by Pearson Education
7

Encapsulation

reading: 8.5 - 8.6

self-check: #13-17

exercises: #5

Copyright 2008 by Pearson Education
8

Encapsulation
 encapsulation: Hiding implementation details of an

object from its clients.

 Encapsulation provides abstraction.

 separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
9

Private fields
 A field can be declared private.

 No code outside the class can access or change it.

private type name;

 Examples:

private int id;

private String name;

 Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

Copyright 2008 by Pearson Education
10

Accessing private state
 We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

 Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

Copyright 2008 by Pearson Education
11

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
12

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}

}

OUTPUT:
p1 is (5, 2)

p2 is (4, 3)

p2 is (6, 7)

Copyright 2008 by Pearson Education
13

Benefits of encapsulation
 Provides abstraction between an object and its clients.

 Protects an object from unwanted access by clients.

 A bank app forbids a client to change an Account's balance.

 Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

 Allows you to constrain objects' state (invariants).

 Example: Only allow Points with non-negative coordinates.

Copyright 2008 by Pearson Education
14

The keyword this

reading: 8.7

Copyright 2008 by Pearson Education
15

this

 this : A reference to the implicit parameter.

 implicit parameter: object on which a method is called

 Syntax for using this:

 To refer to a field:

this.field

 To call a method:

this.method(parameters);

 To call a constructor from another constructor:

this(parameters);

Copyright 2008 by Pearson Education
16

Variable names and scope
 Usually it is illegal to have two variables in the same scope

with the same name.

public class Point {

private int x;

private int y;

...

public void setLocation(int newX, int newY) {

x = newX;

y = newY;

}

}

 The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2008 by Pearson Education
17

Variable shadowing
 An instance method parameter can have the same name as

one of the object's fields:

// this is legal

public void setLocation(int x, int y) {

...

}

 Fields x and y are shadowed by parameters with same names.

 Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2008 by Pearson Education
18

Avoiding shadowing w/ this
public class Point {

private int x;

private int y;

...

public void setLocation(int x, int y) {

this.x = x;

this.y = y;

}

}

 Inside the setLocation method,

 When this.x is seen, the field x is used.

 When x is seen, the parameter x is used.

Copyright 2008 by Pearson Education
19

Multiple constructors
 It is legal to have more than one constructor in a class.

 The constructors must accept different parameters.

public class Point {

private int x;

private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

...

}

Copyright 2008 by Pearson Education
20

Constructors and this

 One constructor can call another using this:

public class Point {

private int x;

private int y;

public Point() {

this(0, 0); // calls the (x, y) constructor

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...

}

