
More Pygame

Writing Games with Pygame, continued
Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

2

Animated Action Games
•  Consider an action game such as Space Invaders or Mario.

How does it differ from our Whack-a-Mole game?
–  What features are present in an action game?
–  What are some major challenges in writing such a game?

3

Our Task
•  Implement Pong!

–  800x480 screen, 10px white border around all edges
–  15x15 square ball bounces off of any surface it touches
–  two 20x150 paddles move when holding Up/Down arrows
–  game displays score on top/center of screen in a 72px font

4

Major Steps
1.  Set up the (non-moving) paddle/ball/wall sprites

2.  Handle key presses, sprite movement, and animation

3.  Handle collisions

4.  Scoring

Step 1

Setting Up Sprites

6

Recall: Sprites
class name(Sprite):
 # constructor
 def __init__(self):
 Sprite.__init__(self)
 self.image = image.load("filename")
 # or, self.image = Surface((w, h))
 self.rect = self.image.get_rect()
 self.rect.center = (x, y)

 other methods (if any)

–  Pre-defined fields in every sprite:
self.image - the image or shape to draw for this sprite

–  images are Surface objects, which includes shapes and images

self.rect - position and size of where to draw the image

7

Recall: Surface
•  In Pygame, every 2D object is an object of type Surface

–  The screen object returned from display.set_mode(),
each game character, images, etc.

–  Useful methods in each Surface object:

Method Name Description
Surface((width, height)) constructs new Surface of given size
fill((red, green, blue)) paints surface in given color (rgb 0-255)
get_width(),
get_height()

returns the dimensions of the surface

get_rect() returns a Rect object representing the
x/y/w/h bounding this surface

blit(src, dest) draws this surface onto another surface

8

RectangularSprite

•  Suggested template for simple white rectangular sprites:
class RectangularSprite(Sprite):
 def __init__(self, size, center):
 Sprite.__init__(self)
 self.image = Surface(size)
 self.image.fill((255, 255, 255))
 self.rect = self.image.get_rect()
 self.rect.center = center

–  Now the various sprites in the Pong game can be
RectangularSprites or extend RectangularSprite to
add their own behavior

9

Recall: Sprite Groups
name = Group(sprite1, sprite2, ...)

–  To draw sprites on screen, they must be put into a Group

Example:

my_mole = Mole() # create a Mole object
other_mole = Mole()
all_sprites = Group(my_mole, other_mole)

Group methods:
–  draw(surface) - draws all sprites in group onto a surface
–  update() - updates every sprite's appearance

10

Exercise
•  Define the sprites for the PyPong game:

–  four 15px-thick borders around the 800x480 board edges

–  two 20x150 paddles, centered vertically, at L/R edges of board

–  a 15x15 ball, in the center of the board

•  Use RectangularSprite as the basis for your sprites.
•  The sprites don't move yet.

Step 2

Animation and Key Presses

12

Recall: Event Loop
after Pygame's screen has been created
while True:
 name = event.wait() # wait for an event
 if name.type == QUIT:
 pygame.quit() # exit the game
 break
 elif name.type == type:
 code to handle another type of events
 ...

 code to update/redraw the game between events

13

Timer Events
time.set_timer(USEREVENT, delayMS)

•  Animation is done using timers
–  Events that automatically occur every delayMS milliseconds
–  Your event loop can check for these events. Each one is a

"frame" of animation

 while True:
 ev = event.wait()
 if ev.type == USEREVENT:
 # the timer has ticked; move sprites,
 # redraw the screen, etc.

14

Key Presses
http://www.pygame.org/docs/ref/key.html

•  key.get_pressed() returns an array of keys held down
–  indexes are constants like K_UP or K_F1
–  values are booleans (True means pressed)

–  Constants for keys: K_LEFT, K_RIGHT, K_UP, K_DOWN,
K_a - K_z, K_0 - K_9, K_F1 - K_F12, K_SPACE,
K_ESCAPE, K_LSHIFT, K_RSHIFT, K_LALT, K_RALT,
K_LCTRL, K_RCTRL, ...

 keys = key.get_pressed()
 if keys[K_LEFT]:
 # left arrow is being held down...

15

Updating Sprites
class Jet(Sprite):
 def __init__(self):
 # ...

 def update(self): # move right 3px / tick
 self.rect = self.rect.move(3, 0)

•  Each sprite can have an update method that describes how
to move that sprite on each timer tick.
–  Move a rectangle by calling its move(dx, dy) method.
–  Calling update on a Group updates all its sprites.

16

Exercise
•  Implement animation and key response in PyPong:

–  Make a timer that ticks every 50 ms.

–  When the timer ticks:
•  Give the ball a dx/dy of 5px and move the ball by that amount.

(The ball will fly off the screen after a moment.)

•  If the up arrow is held down, move the paddles up by 5px.
•  If the down arrow is held down, move the paddles down by 5px.

Step 3

Collisions Between Sprites

18

Collisions Btwn. Rectangles
•  Recall: Each Sprite contains a Rect collision rectangle

•  Rect objects have useful methods for detecting collisions
between the rectangle and another sprite:

–  However, Sprite and Group objects have more useful
methods to detect collisions...

Method Name Description
collidepoint(p) returns True if this Rect contains the point

colliderect(rect) returns True if this Rect contains the rect

19

Collisions Between Groups
spritecollideany(sprite, group)

–  Returns True if sprite has collided with any sprite in the group

•  Useful for finding collisions in a sprite's update method:

class name(Sprite):
 def update(self):
 if spritecollideany(self, group):
 # I collided with a sprite in group

20

Exercise
•  Implement collision response in PyPong:

–  Constrain the paddles; if a paddle collides with one of the top/
bottom borders, stop its movement.

–  Make the ball bounce off of the other sprites on the board:
•  If it hits the top or bottom walls, it should invert its y direction.
•  If it hits a paddle, it should invert its x direction.

Step 4

Scoring, Polish, etc.

22

Font

•  Text is drawn using a Font object:
name = Font(filename, size)

–  Pass None for the file name to use a default font.

•  A Font draws text as a Surface with its render method:
name.render("text", True, (red, green, blue))

Example:
my_font = Font(None, 16)

text = my_font.render("Hello", True, (0, 0, 0))

23

Displaying Text
•  A Sprite can be text by setting that text's Surface to be

its .image property.

Example:
class Banner(Sprite):
 def __init__(self):
 my_font = Font(None, 24)
 self.image = my_font.render("Hello", \
 True, (0, 0, 0))
 self.rect = self.image.get_rect()
 self.rect.center = (250, 170)

24

Exercise
•  Implement scoring of points in PyPong.

–  Make a sprite to represent the current scoreboard.
•  Draw the score in 72px font, in the top/middle of the board.
•  Draw it in a format such as "0:0".

–  Expand the collision detection for the ball:
•  If it hits the right wall, it should score a point for Player 1.
•  If it hits the left wall, it should score a point for Player 2.

25

Sounds
•  Loading and playing a sound file:

from pygame.mixer import *
mixer.init() # initialize sound system
mixer.stop() # silence all sounds

Sound("filename").play() # play a sound

•  Loading and playing a music file:
music.load("filename") # load bg music file
music.play(loops=0) # play/loop music
 # (-1 loops == infinite)

others: stop, pause, unpause, rewind, fadeout, queue

26

Further Exploration
•  Physics: Sprites that accelerate; gravity; etc.

•  AI: Computer opponents that play "intelligently"

•  Supporting other input devices
–  See documentation for Pygame's Joystick module

•  Multi-player (local or network)

