
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9
Lecture 9-2: Interacting with the Superclass (super)

reading: 9.3 - 9.4



Copyright 2008 by Pearson Education
2

Changes to common behavior
Let's return to our previous company/employee example.

Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
The base employee salary is now $50,000.
Legal secretaries now make $55,000.
Marketers now make $60,000.

We must modify our code to reflect this policy change.



Copyright 2008 by Pearson Education
3

Modifying the superclass
// A class to represent employees in general (20-page manual).
public class Employee {

public int getHours() {
return 40;           // works 40 hours / week

}

public double getSalary() {
return 50000.0;      // $50,000.00 / year

}

...
}

Are we finished?

The Employee subclasses are still incorrect.
They have overridden getSalary to return other values.



Copyright 2008 by Pearson Education
4

An unsatisfactory solution
public class LegalSecretary extends Secretary {

public double getSalary() {

return 55000.0;

}

...

}

public class Marketer extends Employee {

public double getSalary() {

return 60000.0;

}

...

}

Problem: The subclasses' salaries are based on the Employee 
salary, but the getSalary code does not reflect this.



Copyright 2008 by Pearson Education
5

Calling overridden methods
Subclasses can call overridden methods with super

super.method(parameters)

Example:
public class LegalSecretary extends Secretary {

public double getSalary() {
double baseSalary = super.getSalary();
return baseSalary + 5000.0;

}
...

}

Exercise: Modify Lawyer and Marketer to use super.



Copyright 2008 by Pearson Education
6

Improved subclasses
public class Lawyer extends Employee {

public String getVacationForm() {
return "pink";

}

public int getVacationDays() {
return super.getVacationDays() + 5;

}

public void sue() {
System.out.println("I'll see you in court!");

}
}

public class Marketer extends Employee {
public void advertise() {

System.out.println("Act now while supplies last!");
}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}



Copyright 2008 by Pearson Education
7

Calling overridden methods
super.method(parameters)

Example:
public class LegalSecretary extends Secretary {

public double getSalary() {
double baseSalary = super.getSalary();
return baseSalary + 5000.0;

}
...

}

Recall: Subclasses can call overridden methods with super.



Copyright 2008 by Pearson Education
8

Inheritance and constructors
Imagine that we want to give employees more vacation 
days the longer they've been with the company.

For each year worked, we'll award 2 additional vacation days.

When an Employee object is constructed, we'll pass in the 
number of years the person has been with the company.

This will require us to modify our Employee class and add 
some new state and behavior.

Exercise: Make necessary modifications to the Employee class.



Copyright 2008 by Pearson Education
9

Modified Employee class
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getHours() {
return 40;

}

public double getSalary() {
return 50000.0;

}

public int getVacationDays() {
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

}
}



Copyright 2008 by Pearson Education
10

Problem with constructors
Now that we've added the constructor to the Employee
class, our subclasses do not compile.  The error:
Lawyer.java:2: cannot find symbol
symbol  : constructor Employee()
location: class Employee
public class Lawyer extends Employee {

^

The short explanation: Once we write a constructor (that 
requires parameters) in the superclass, we must now write 
constructors for our employee subclasses as well.

The long explanation: (next slide)



Copyright 2008 by Pearson Education
11

The detailed explanation
Constructors are not inherited.

Subclasses don't inherit the Employee(int) constructor.

Subclasses receive a default constructor that contains:

public Lawyer() {

super(); // calls Employee() constructor

}

But our Employee(int) replaces the default Employee().
The subclasses' default constructors are now trying to call a 
non-existent default Employee constructor.



Copyright 2008 by Pearson Education
12

Calling superclass constructor
super(parameters);

Example:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years); // calls Employee constructor

}
...

}

The super call must be the first statement in the constructor.

Exercise: Make a similar modification to the Marketer class.



Copyright 2008 by Pearson Education
13

Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public Marketer(int years) {
super(years);

}

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

Exercise: Modify the Secretary subclass.
Secretaries' years of employment are not tracked.
They do not earn extra vacation for years worked.



Copyright 2008 by Pearson Education
14

Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {

public Secretary() {
super(0);

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + text);

}
}

Since Secretary doesn't require any parameters to its 
constructor, LegalSecretary compiles without a constructor.

Its default constructor calls the Secretary() constructor.



Copyright 2008 by Pearson Education
15

Inheritance and fields
Try to give lawyers $5000 for each year at the company:
public class Lawyer extends Employee {

...
public double getSalary() {

return super.getSalary() + 5000 * years;
}
...

}

Does not work; the error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^

Private fields cannot be directly accessed from subclasses.
One reason: So that subclassing can't break encapsulation.
How can we get around this limitation?



Copyright 2008 by Pearson Education
16

Improved Employee code
Add an accessor for any field needed by the subclass.
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getYears() {
return years;

}
...

}

public class Lawyer extends Employee {
public Lawyer(int years) {

super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * getYears();

}
...

}



Copyright 2008 by Pearson Education
17

Revisiting Secretary
The Secretary class currently has a poor solution.

We set all Secretaries to 0 years because they do not get a 
vacation bonus for their service.
If we call getYears on a Secretary object, we'll always get 0.
This isn't a good solution; what if we wanted to give some 
other reward to all employees based on years of service?

Redesign our Employee class to allow for a better solution.



Copyright 2008 by Pearson Education
18

Improved Employee code
• Let's separate the standard 10 vacation days from those 

that are awarded based on seniority.

public class Employee {
private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getVacationDays() {
return 10 + getSeniorityBonus();

}

// vacation days given for each year in the company
public int getSeniorityBonus() {

return 2 * years;
}
...

}

How does this help us improve the Secretary?



Copyright 2008 by Pearson Education
19

Improved Secretary code
• Secretary can selectively override getSeniorityBonus; 

when getVacationDays runs, it will use the new version.
Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {

super(years);
}

// Secretaries don't get a bonus for their years of service.
public int getSeniorityBonus() {

return 0;
}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + text);

}
}



Copyright 2008 by Pearson Education
20

Critter exercise: Toad
Write a critter class Toad:

Does some of this behavior sound familiar?

public Toad()constructor

"F"toString

Walks west once every 5 moves:
C, C, C, C, W, C, C, C, C, W, ...

getMove

brown (red=192, green=128, blue=0)getColor

Always forfeits  (the default fighting behavior)fight

Never eats  (the default eating behavior)eat

BehaviorMethod



Copyright 2008 by Pearson Education
21

Modified Frog
import java.awt.*;   // for Color

public class Frog extends Critter {
private int age;
private int count;

public Frog(int age) {
this.age = age;
this.count = 0;

}

public Direction getHopDirection() {  // added so that it can
return Direction.EAST;            // be overridden by Toad

}

public Direction getMove() {
count++;
if (count >= age) {    // go EAST once every 'age' moves

count = 0;
return getHopDirection();

} else {
return Direction.CENTER;

}
}

...
}



Copyright 2008 by Pearson Education
22

Toad solution
import java.awt.*;   // for Color

public class Toad extends Frog {
private static final Color BROWN = new Color(192, 128, 0);

public Toad() {
super(5);

}

public Color getColor() {
return BROWN;

}

public Direction getHopDirection() {   // overrides the version
return Direction.WEST;             // from Frog

}
}



Copyright 2008 by Pearson Education
23

Critter: WhiteRabbit
In section, you wrote a Rabbit critter

Hops: N N, S S, E E, N N, S S, E E, ...

Let's write WhiteRabbit
White, not brown
Hops in cycles of 5
(N*5, S*5, E, E,
N*5, S*5, E, E, ...)


