Building Java Programs

Chapter 9
Lecture 9-2: Interacting with the Superclass (super)

reading: 9.3 - 9.4

Copyright 2008 by Pearson Education

Changes to common behavior

e Let's return to our previous company/employee example.

* Imagine a company-wide change affecting all employees.
Example: Everyone is given a $10,000 raise due to inflation.
» The base employee salary is now $50,000.
e Legal secretaries now make $55,000.

» Marketers now make $60,000.

* We must modify our code to reflect this policy change.

~ Copyright 2008 by Pearson Education

I
\ AR

i ——————————

odifying the;uperclass

// A class to represent employees in general (20-page manual).
public class Employee
public int getHours ()
return 40; // works 40 hours / week
}

public double getSalary() {
return 50000.0; // $50,000.00 / year
}

}

o Are we finished?

* The Employee subclasses are still incorrect.
» They have overridden getSalary to return other values.

-

Copyright 2008 by Pearson Education

e
i
I -

e — —

An unsatisfactory solution

public class LegalSecretary extends Secretary {

public double getSalary () f{
return 55000.0;

}
J

public class Marketer extends Employee (
public double getSalary () {
return 60000.0;

J
}

» Problem: The subclasses' salaries are based on the Employee
salary, but the getsalary code does not reflect this.

¥ -

Copyright 2008 by Pearson Education

e
e
il —a

o s e _ p

émlmlping overriddﬁen methods

e Subclasses can call overridden methods with super

super . method (parameters)

 Example:

public class LegalSecretary extends Secretary ({
public double getSalary () {
double baseSalary = super.getSalary() ;
return baseSalary + 5000.0;

» Exercise: Modify Lawyer and Marketer t0O use super.

~ Copyright 2008 by Pearson Education

e

Improved subclasses

public class Lawyer extends Employee {
public String getVacationForm()
¥ eI S Pl
}

public int getVacationDays () {
return super.getVacationDays() + 5;
}

public void sue () {
Swis Tenyouzypa et e oTRTin ST codnateal A
}

}

public class Marketer extends Employee ({
public void advertise()
System.out .println("Act now while supplies last!");
}

public double getSalary () {
return super.getSalary() + 10000.0;
}

¥ -

Copyright 2008 by Pearson Education

e

aIIing overriddﬁen methods

super . method (parameters)

 Example:

public class LegalSecretary extends Secretary ({
public double getSalary () {
double baseSalary = super.getSalary() ;
return baseSalary + 5000.0;

» Recall: Subclasses can call overridden methods with super.

¥ -

Copyright 2008 by Pearson Education

Inheritance and constructors
* Imagine that we want to give employees more vacation

days the longer they've been with the company.
» For each year worked, we'll award 2 additional vacation days.

« When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

» This will require us to modify our Employee class and add
some new state and behavior.

» Exercise: Make necessary modifications to the Employee class.

g - - 8
) i Copyright 2008 by Pearson Education

e e e S

e inind

Modified Employee class

public class Employee ({
private int years;

public Employee(int initialYears) {
years = initialYears;
}

public int getHours ()
return 40;
}

public double getSalary () {
return 50000.0;
}

public int getVacationDays() ({
return 10 + 2 * years;
}

public String getVacationForm()
return "yellow";
)

Copyright 2008 by Pearson Education

e
S
\ o
e T | el el

S ——— — =
- e~

roblem with constructors

* Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee

public class Lawyer extends Employee

» The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

 The long explanation: (next slide)

~ Copyright 2008 by Pearson Education

10

The detailed explanation

e Constructors are not inherited.
e Subclasses don't inherit the Employee (int) constructor.

e Subclasses receive a default constructor that contains:

public TLawyer ()i

super () ; // calls Employee() constructor

e But our Employee (int) replaces the default Employee ().

» The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

1k

———— Copyright 2008 by Pearson Education

i =
I
\ s
R i
I

e e — — —

Calling superclass constructor

super (parameters) ;

Example:
public class Lawyer extends Employee {
public Lawyer (int years) {
super (years); // calls Employee constructor

)
-

 The super call must be the first statement in the constructor.

» Exercise: Make a similar modification to the Marketer class.

12

=

Copyright 2008 by Pearson Education

Modlﬂed Marketer class

// A class to represent marketers.
public class Marketer extends Employee
public Marketer (int years) {
super (years) ;
}

public void advertise() {
System.out.println("Act now while supplies last!");
}

public double getSalary() {
return super.getSalary () + 10000.0;
}

» Exercise: Modify the Secretary subclass.
« Secretaries' years of employment are not tracked.
« They do not earn extra vacation for years worked.

- Copyright 2008 by Pearson Education

13

Modlﬂed Secretary class

// A class to represent secretaries.
public class Secretary extends Employee ({

public Secretary() {
super (0) ;
}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + text);

» Since Secretary doesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.

« Its default constructor calls the secretary () constructor.

14

¥ -

Copyright 2008 by Pearson Education

nheritance and fields

e Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {

B

public double getSalary () {
return super.getSalary() + 5000 * years;
}

}
* Does not work; the error is the following:

Lawyer.java:7: years has private access in Employee
return super.getSalary () + 5000 * years;

* Private fields cannot be directly accessed from subclasses.
 One reason: So that subclassing can't break encapsulation.
» How can we get around this limitation?

g 15
~ Copyright 2008 by Pearson Education

Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee ({
private int years;

public Employee (int initialYears) {
} years = initialYears;

public int getYears() {
return years;

}
£

public class Lawyer extends Employee {
public Lawyer (int years)
super (years) ;

public double getSalary () ({
return super.getSalary() + 5000 * getYears() ;

}

16

¥ -

Copyright 2008 by Pearson Education

Revisiting

e oEc el
* The secretary class currently has a poor solution.
» We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.
» If we call getyears on a secretary object, we'll always get 0.

» This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

*» Redesign our Employee class to allow for a better solution.

- R
o pe— Copyright 2008 by Pearson Education

e

Improved Employee code

o Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee ({
private int years;

public Employee (int initialYears)
} years = initialYears;

public int getVacationDays() {
} return 10 + getSeniorityBonus() ;

// vacation days given for each year in the company
public int getSeniorityBonus() {
} return 2 * years;

}

» How does this help us improve the secretary?

e 18
~ Copyright 2008 by Pearson Education

Improved Secretary code

» Secretary can selectively override getSeniorityBonus;
when getVacationDays runs, it will use the new version.

» Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {
super (years) ;
)

// Secretaries don't get a bonus for their years of service.
public int getSeniorityBonus () {
return 0;

public void takeDictation(String text) {
Sy StemsouErprrnEin i gl rnagrdieEaEron o ek a vt eac ks

}

IRS)

~ Copyright 2008 by Pearson Education

Critter exercise:

R
\ oA
B _

oA

—— —

o acl

e Write a critter class Toad:

Method Behavior

constructor |public Toad()
eat Never eats (the default eating behavior)
fight Always forfeits (the default fighting behavior)
getColor |brown (red=192, green=128, blue=0)
getMove Walks west once every 5 moves:

CGe CECW CCeE W ..
toString !

» Does some of this behavior sound familiar?

~ Copyright 2008 by Pearson Education

20

import java.awt.*; TR S e P A o

public class Frog extends Critter (
private int age;
private int count;

public Frog(int age) {
this.age = age;
Ehirgt counEi="20}

}

public Direction getHopDirection() { // added so that it can

) return Direction.EAST; // be overridden by Toad
public Direction getMove () {
count++;
if (count >= age) { // go EAST once every 'age' moves
SEONTHE s
return getHopDirection() ;
} else {

return Direction.CENTER;

}

= | 21
Copyright 2008 by Pearson Education

Toad solution

import java.awt.*; TR S e P A o

public class Toad extends Frog
praviatesstat e EFinalky Cokor s BROWNE S S new S Co oG9 2 anilogaeagys

public Toad() {
super (5) ;

public Color getColor() {
return BROWN;
)

public Direction getHopDirection() { // overrides the version
) return Direction.WEST; // from Frog

22

: _ Copyright 2008 by Pearson Education

Critter: whiteRabbit

e In section, you wrote a Rabbit critter
« Hops: NN,SS,EE,NN,SS, EE, ...

e Let's write whiteRabbit
» White, not brown
 Hops in cycles of 5

(N*5, S*5 E, E,
N*5, S*5 E, E, ...)

23

Copyright 2008 by Pearson Education

