
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-1: Classes and Objects

reading: 8.1 - 8.3
self-checks: #1-9
exercises: #1-4

Copyright 2010 by Pearson Education
2

A programming problem
Given a file of cities' (x, y) coordinates,
which begins with the number of cities:
6
50 20
90 60
10 72
74 98
5 136
150 91

Write a program to draw the cities on a DrawingPanel, then drop
a "bomb" that turns all cities red that are within a given radius:
Blast site x? 100
Blast site y? 100
Blast radius? 75
Kaboom!

Copyright 2010 by Pearson Education
3

A bad solution

Scanner input = new Scanner(new File("cities.txt"));
int cityCount = input.nextInt();
int[] xCoords = new int[cityCount];
int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {
xCoords[i] = input.nextInt(); // read each city
yCoords[i] = input.nextInt();

}
...

parallel arrays: 2+ arrays with related data at same indexes.
Considered poor style.

Copyright 2010 by Pearson Education
4

Observations
The data in this problem is a set of points.
It would be better stored as Point objects.

A Point would store a city's x/y data.

We could compare distances between Points
to see whether the bomb hit a given city.

Each Point would know how to draw itself.

The overall program would be shorter and cleaner.

Copyright 2010 by Pearson Education
5

Clients of objects
client program: A program that uses objects.

Example: Bomb is a client of DrawingPanel and Graphics.

Bomb.java (client program)
public class Bomb {

main(String[] args) {
new DrawingPanel(...)
new DrawingPanel(...)
...

}
}

DrawingPanel.java (class)
public class DrawingPanel {

...
}

Copyright 2010 by Pearson Education
6

Classes and objects
class: A program entity that represents either:

1. A program / module, or
2. A template for a new type of objects.

The DrawingPanel class is a template for creating
DrawingPanel objects.

object: An entity that combines state and behavior.
object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects.

Copyright 2010 by Pearson Education
7

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1
state:

song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2
state:

song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3
state:

song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

Copyright 2010 by Pearson Education
8

Abstraction
abstraction: A distancing between ideas and details.

We can use objects without knowing how they work.

abstraction in an iPod:
You understand its external behavior (buttons, screen).
You don't understand its inner details, and you don't need to.

Copyright 2010 by Pearson Education
9

Our task
In the following slides, we will implement a Point class as
a way of learning about defining classes.

We will define a type of objects named Point.
Each Point object will contain x/y data called fields.
Each Point object will contain behavior called methods.
Client programs will use the Point objects.

Copyright 2010 by Pearson Education
10

Point objects (desired)
Point p1 = new Point(5, -2);

Point p2 = new Point(); // origin, (0, 0)

Data in each Point object:

Methods in each Point object:

how far away the point is from point pdistance(p)

displays the point on a drawing paneldraw(g)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name

Copyright 2010 by Pearson Education
11

Point class as blueprint

The class (blueprint) will describe how to create objects.
Each object will contain its own data and methods.

Point class
state:
int x, y

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #1
state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2
state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3
state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

12
Copyright 2010 by Pearson Education

Object state:
Fields

reading: 8.2
self-check: #5-6

Copyright 2010 by Pearson Education
13

Point class, version 1
public class Point {

int x;
int y;

}

Save this code into a file named Point.java.

The above code creates a new type named Point.
Each Point object contains two pieces of data:

an int named x, and
an int named y.

Point objects do not contain any behavior (yet).

Copyright 2010 by Pearson Education
14

Fields
field: A variable inside an object that is part of its state.

Each object has its own copy of each field.

Declaration syntax:

type name;

Example:

public class Student {
String name; // each Student object has a
double gpa; // name and gpa field

}

Copyright 2010 by Pearson Education
15

Accessing fields
Other classes can access/modify an object's fields.

access: variable.field
modify: variable.field = value;

Example:
Point p1 = new Point();
Point p2 = new Point();
System.out.println("the x-coord is " + p1.x); // access
p2.y = 13; // modify

Copyright 2010 by Pearson Education
16

A class and its client
Point.java is not, by itself, a runnable program.

A class can be used by client programs.

PointMain.java (client program)
public class PointMain {

main(String args) {
Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;
...

}
}

Point.java (class of objects)
public class Point {

int x;
int y;

}

2y7x

3y4x

Copyright 2010 by Pearson Education
17

PointMain client example
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println(p1.x + ", " + p1.y); // 0, 2

// move p2 and then print it
p2.x += 2;
p2.y++;
System.out.println(p2.x + ", " + p2.y); // 6, 1

}
}

Exercise: Modify the Bomb program to use Point objects.

Copyright 2010 by Pearson Education
18

Arrays of objects
null : A value that does not refer to any object.

The elements of an array of objects are initialized to null.

String[] words = new String[5];
DrawingPanel[] windows = new DrawingPanel[3];

nullnullnullnullnullvalue

43210index

nullnullnullvalue

210index

words

windows

Copyright 2010 by Pearson Education
19

Things you can do w/ null
store null in a variable or an array element
String s = null;
words[2] = null;

print a null reference
System.out.println(s); // null

ask whether a variable or array element is null
if (words[2] == null) { ...

pass null as a parameter to a method
System.out.println(null); // null

return null from a method (often to indicate failure)
return null;

Copyright 2010 by Pearson Education
20

Null pointer exception
dereference: To access data or methods of an object with
the dot notation, such as s.length() .

It is illegal to dereference null (causes an exception).
null is not any object, so it has no methods or data.

String[] words = new String[5];
System.out.println("word is: " + words[0]);
words[0] = words[0].toUpperCase(); // ERROR

Output:
word is: null
Exception in thread "main"
java.lang.NullPointerException

at Example.main(Example.java:8)

nullnullnullnullnullvalue

43210index

Copyright 2010 by Pearson Education
21

Looking before you leap
You can check for null before calling an object's methods.

String[] words = new String[5];
words[0] = "hello";
words[2] = "goodbye"; // words[1], [3], [4] are null

for (int i = 0; i < words.length; i++) {
if (words[i] != null) {

words[i] = words[i].toUpperCase();
}

}

nullnull"GOODBYE"null"HELLO"value

43210index
words

Copyright 2010 by Pearson Education
22

Two-phase initialization
1) initialize the array itself (each element is initially null)
2) initialize each element of the array to be a new object

String[] words = new String[4]; // phase 1
for (int i = 0; i < words.length; i++) {

coords[i] = "word" + i; // phase 2
}

"word3""word2""word1""word0"value

3210index
words

Copyright 2010 by Pearson Education
23

Bomb answer 1
import java.awt.*;
import java.io.*;
import java.util.*;

// Displays a set of cities and simulates dropping a "bomb" on them.
public class Bomb {

public static void main(String[] args) throws FileNotFoundException {
DrawingPanel panel = new DrawingPanel(200, 200);
Graphics g = panel.getGraphics();

Scanner input = new Scanner(new File("cities.txt"));
Point[] cities = readCities(input, g);

// drop the "bomb"
Scanner console = new Scanner(System.in);
Point bomb = new Point();
System.out.print("Blast site x? ");
bomb.x = console.nextInt();
System.out.print("Blast site y? ");
bomb.y = console.nextInt();
System.out.print("Blast radius? ");
int radius = console.nextInt();
boom(bomb, radius, cities, g);

}
...

Copyright 2010 by Pearson Education
24

Bomb answer 2
// Reads input file of cities and returns them as array of Points.
public static Point[] readCities(Scanner input, Graphics g) {

int numCities = input.nextInt(); // first line = # of cities
Point[] cities = new Point[numCities];
for (int i = 0; i < cities.length; i++) {

cities[i] = new Point();
cities[i].x = input.nextInt(); // read city x/y from file
cities[i].y = input.nextInt();
g.fillOval(cities[i].x, cities[i].y, 3, 3);
g.drawString("(" + cities[i].x + ", " + cities[i].y + ")",

cities[i].x, cities[i].y);
}
return cities;

}

// Simulates dropping a bomb at the given location on the given cities.
public static void boom(Point bomb, int radius, Point[] cities, Graphics g) {

g.setColor(Color.RED);
g.drawOval(bomb.x - radius, bomb.y - radius, 2 * radius, 2 * radius);
for (int i = 0; i < cities.length; i++) {

int dx = cities[i].x - bomb.x;
int dy = cities[i].y - bomb.y;
double distance = Math.sqrt(dx * dx + dy * dy);
if (distance <= radius) {

g.fillOval(cities[i].x, cities[i].y, 3, 3);
g.drawString("(" + cities[i].x + ", " + cities[i].y + ")",

cities[i].x, cities[i].y);
}

}
System.out.println("Kaboom!");

}
}

