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Building Java Programs

Chapter 8
Lecture 8-1: Classes and Objects

reading: 8.1 - 8.3
self-checks: #1-9
exercises: #1-4
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A programming problem
Given a file of cities' (x, y) coordinates,
which begins with the number of cities:
6
50 20
90 60
10 72
74 98
5 136
150 91

Write a program to draw the cities on a DrawingPanel, then drop 
a "bomb" that turns all cities red that are within a given radius:
Blast site x? 100
Blast site y? 100
Blast radius? 75
Kaboom!
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A bad solution

Scanner input = new Scanner(new File("cities.txt"));
int cityCount = input.nextInt();
int[] xCoords = new int[cityCount];
int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {
xCoords[i] = input.nextInt();   // read each city
yCoords[i] = input.nextInt();

}
...

parallel arrays: 2+ arrays with related data at same indexes.
Considered poor style.
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Observations
The data in this problem is a set of points.
It would be better stored as Point objects.

A Point would store a city's x/y data.

We could compare distances between Points
to see whether the bomb hit a given city.

Each Point would know how to draw itself.

The overall program would be shorter and cleaner.
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Clients of objects
client program: A program that uses objects.

Example: Bomb is a client of DrawingPanel and Graphics.

Bomb.java (client program)
public class Bomb {

main(String[] args) {
new DrawingPanel(...)
new DrawingPanel(...)
...

}
}

DrawingPanel.java (class)
public class DrawingPanel {

...
}
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Classes and objects
class: A program entity that represents either:

1. A program / module,  or
2. A template for a new type of objects.

The DrawingPanel class is a template for creating 
DrawingPanel objects.

object: An entity that combines state and behavior.
object-oriented programming (OOP): Programs that 
perform their behavior as interactions between objects.
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Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1
state:

song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2
state:

song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3
state:

song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates
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Abstraction
abstraction: A distancing between ideas and details.

We can use objects without knowing how they work.

abstraction in an iPod:
You understand its external behavior (buttons, screen).
You don't understand its inner details, and you don't need to.
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Our task
In the following slides, we will implement a Point class as 
a way of learning about defining classes.

We will define a type of objects named Point.
Each Point object will contain x/y data called fields.
Each Point object will contain behavior called methods.
Client programs will use the Point objects.
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Point objects (desired)
Point p1 = new Point(5, -2);

Point p2 = new Point();          // origin, (0, 0)

Data in each Point object:

Methods in each Point object:

how far away the point is from point pdistance(p)

displays the point on a drawing paneldraw(g)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name
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Point class as blueprint

The class (blueprint) will describe how to create objects.
Each object will contain its own data and methods.

Point class
state:
int x,  y

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #1
state:
x = 5,   y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2
state:
x = -245,   y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3
state:
x = 18,   y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)
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Object state:
Fields

reading: 8.2
self-check: #5-6
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Point class, version 1
public class Point {

int x;
int y;

}

Save this code into a file named Point.java.

The above code creates a new type named Point.
Each Point object contains two pieces of data:

an int named x, and
an int named y.

Point objects do not contain any behavior (yet).
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Fields
field: A variable inside an object that is part of its state.

Each object has its own copy of each field.

Declaration syntax:

type name;

Example:

public class Student {
String name; // each Student object has a 
double gpa; // name and gpa field

}
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Accessing fields
Other classes can access/modify an object's fields.

access: variable.field
modify: variable.field = value;

Example:
Point p1 = new Point();
Point p2 = new Point();
System.out.println("the x-coord is " + p1.x);   // access
p2.y = 13;                                      // modify
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A class and its client
Point.java is not, by itself, a runnable program.

A class can be used by client programs.

PointMain.java (client program)
public class PointMain {

main(String args) {
Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;
...

}
}

Point.java (class of objects)
public class Point {

int x;
int y;

}

2y7x

3y4x
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PointMain client example
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println(p1.x + ", " + p1.y);   // 0, 2

// move p2 and then print it
p2.x += 2;
p2.y++;
System.out.println(p2.x + ", " + p2.y);   // 6, 1

}
}

Exercise: Modify the Bomb program to use Point objects.
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Arrays of objects
null : A value that does not refer to any object.

The elements of an array of objects are initialized to null.

String[] words = new String[5];
DrawingPanel[] windows = new DrawingPanel[3];

nullnullnullnullnullvalue

43210index

nullnullnullvalue

210index

words

windows
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Things you can do w/ null
store null in a variable or an array element
String s = null;
words[2] = null;

print a null reference
System.out.println(s);      // null

ask whether a variable or array element is null
if (words[2] == null) { ...

pass null as a parameter to a method
System.out.println(null);   // null

return null from a method  (often to indicate failure)
return null;



Copyright 2010 by Pearson Education
20

Null pointer exception
dereference: To access data or methods of an object with 
the dot notation, such as s.length() .

It is illegal to dereference null (causes an exception).
null is not any object, so it has no methods or data.

String[] words = new String[5];
System.out.println("word is: " + words[0]);
words[0] = words[0].toUpperCase();   // ERROR

Output:
word is: null
Exception in thread "main" 
java.lang.NullPointerException

at Example.main(Example.java:8)

nullnullnullnullnullvalue

43210index
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Looking before you leap
You can check for null before calling an object's methods.

String[] words = new String[5];
words[0] = "hello";
words[2] = "goodbye";   // words[1], [3], [4] are null

for (int i = 0; i < words.length; i++) {
if (words[i] != null) {

words[i] = words[i].toUpperCase();
}

}

nullnull"GOODBYE"null"HELLO"value

43210index
words



Copyright 2010 by Pearson Education
22

Two-phase initialization
1) initialize the array itself (each element is initially null)
2) initialize each element of the array to be a new object

String[] words = new String[4];           // phase 1
for (int i = 0; i < words.length; i++) {

coords[i] = "word" + i;       // phase 2
}

"word3""word2""word1""word0"value

3210index
words
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Bomb answer 1
import java.awt.*;
import java.io.*;
import java.util.*;

// Displays a set of cities and simulates dropping a "bomb" on them.
public class Bomb {

public static void main(String[] args) throws FileNotFoundException {
DrawingPanel panel = new DrawingPanel(200, 200);
Graphics g = panel.getGraphics();

Scanner input = new Scanner(new File("cities.txt"));
Point[] cities = readCities(input, g);

// drop the "bomb"
Scanner console = new Scanner(System.in);
Point bomb = new Point();
System.out.print("Blast site x? ");
bomb.x = console.nextInt();
System.out.print("Blast site y? ");
bomb.y = console.nextInt();
System.out.print("Blast radius? ");
int radius = console.nextInt();
boom(bomb, radius, cities, g);

}
...
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Bomb answer 2
// Reads input file of cities and returns them as array of Points.
public static Point[] readCities(Scanner input, Graphics g) {

int numCities = input.nextInt();   // first line = # of cities
Point[] cities = new Point[numCities];
for (int i = 0; i < cities.length; i++) {

cities[i] = new Point();
cities[i].x = input.nextInt();  // read city x/y from file
cities[i].y = input.nextInt();
g.fillOval(cities[i].x, cities[i].y, 3, 3);
g.drawString("(" + cities[i].x + ", " + cities[i].y + ")", 

cities[i].x, cities[i].y);
}
return cities;

}

// Simulates dropping a bomb at the given location on the given cities.
public static void boom(Point bomb, int radius, Point[] cities, Graphics g) {

g.setColor(Color.RED);
g.drawOval(bomb.x - radius, bomb.y - radius, 2 * radius, 2 * radius);
for (int i = 0; i < cities.length; i++) {

int dx = cities[i].x - bomb.x;
int dy = cities[i].y - bomb.y;
double distance = Math.sqrt(dx * dx + dy * dy);
if (distance <= radius) {

g.fillOval(cities[i].x, cities[i].y, 3, 3);
g.drawString("(" + cities[i].x + ", " + cities[i].y + ")", 

cities[i].x, cities[i].y);
}

}
System.out.println("Kaboom!");

}
}


