This assignment focuses on classes and inheritance. Turn in Ant.java, Bird.java, Hippo.java, Vulture.java, and Husky.java. Download supporting files on the course web site. Run CritterMain.java to start the simulation.

Program Behavior:
You are provided with classes that implement a graphical simulation of a 2D world of moving animals. You will write a set of classes that define the behavior of those animals. Different animals move and behave in different ways. Your classes will define the unique behaviors for each animal.

The critter world is divided into cells with integer coordinates. The world is 60 cells wide and 50 cells tall. The upper-left cell has coordinates (0, 0); x increases to the right and y increases downward.

Movement
On each round of the simulation, the simulator asks each critter object which direction it wants to move. Each round a critter can move one square north, south, east, west, or stay at its current location. The world has a finite size, but it wraps around in all four directions (for example, moving east from the right edge brings you back to the left edge).

This program will be confusing at first, because you do not write its main method; your code is not in control of the overall execution. Instead, your objects are part of a larger system. You might want your critters make several moves at once using a loop, but you can’t. The only way a critter moves is to wait for the simulator to ask it for a single move and return that move. This experience can be frustrating, but it is a good introduction to object-oriented programming.

Fighting/Mating
As the simulation runs, animals may collide by moving onto the same location. When two animals collide, if they are from different species, they fight. The winning animal survives and the losing animal is removed from the game. Each animal chooses one of Attack.ROAR, Attack.POUNCE, or Attack.SCRATCH. Each attack is strong against one other (e.g., roar beats scratch) and weak against another (roar loses to pounce). The following table summarizes the choices and which animal will win in each case. To remember which beats which, notice that the starting letters of “Rock, Paper, Scissors” match those of “Roar, Pounce, Scratch.” If the animals make the same choice, the winner is chosen at random.

<table>
<thead>
<tr>
<th>Critter #1</th>
<th>Attack.ROAR</th>
<th>Attack.POUNCE</th>
<th>Attack.SCRATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack.ROAR</td>
<td>random winner</td>
<td>#2 wins</td>
<td>#1 wins</td>
</tr>
<tr>
<td>Attack.POUNCE</td>
<td>#1 wins</td>
<td>random winner</td>
<td>#2 wins</td>
</tr>
<tr>
<td>Attack.SCRATCH</td>
<td>#2 wins</td>
<td>#1 wins</td>
<td>random winner</td>
</tr>
</tbody>
</table>

If two animals of the same species collide, they "mate" to produce a baby. Animals are vulnerable to attack while mating: any other animal that collides with them will defeat them. An animal can mate only once during its lifetime.

Eating
The simulation world also contains food (represented by the period character, ".") for the animals to eat. There are pieces of food on the world initially, and new food slowly grows into the world over time. As an animal moves, it may encounter food, in which case the simulator will ask your animal whether it wants to eat it. Different kinds of animals have different eating behavior; some always eat, and others only eat under certain conditions.

Every time one class of animals eats a few pieces of food, that animal will be put to "sleep" by the simulator for a small amount of time. While asleep, animals cannot move, and if they enter a fight with another animal, they will always lose.

Scoring
The simulator keeps a score for each class of animal, shown on the right side of the screen. A class’s score is based on how many animals of that class are alive, how much food they have eaten, and how many other animals they have killed.
Provided Files:

Each class you'll write will extend a superclass named Critter. This is an example of inheritance, as discussed in Ch. 9 of the textbook. Inheritance makes it easier for our code to talk to your critter classes, and it helps us be sure that all your animal classes will implement all the methods we need. But to do this assignment you don't need to understand much about inheritance. Your class headers should indicate the inheritance by writing extends Critter, like the following:

```java
public class Ant extends Critter {
...
}
```

The Critter class contains the following methods, which you must write in each of your classes:

- public boolean eat()
 When your animal encounters food, our code calls this on it to ask whether it wants to eat (true) or not (false).

- public Attack fight(String opponent)
 When two animals move onto the same square of the grid, they fight. When they collide, our code calls this on each animal to ask it what kind of attack it wants to use in a fight with the given opponent.

- public Color getColor()
 Every time the board updates, our code calls this on your animal to ask it what color it wants to be drawn with.

- public Direction getMove()
 Every time the board updates, our code calls this on your animal to ask it which way it wants to move.

- public String toString()
 Every time the board updates, our code calls this on your animal to ask what letter it should be drawn as.

Just by writing extends Critter as shown above, you receive a default version of these methods. The default behavior is to never eat, to always forfeit in a fight, to use the color black, to always stand still (a move of Direction.CENTER), and a toString of "?". If you don't want this default, rewrite (override) the methods in your class with your own behavior.

For example, below is a critter class Stone. A Stone is displayed with the letter S, is gray in color, never moves or eats, and always roars in a fight. Your classes will look like this class, except with fields, a constructor, and more sophisticated code. Note that the Stone does not need an eat or getMove method; it uses the default behavior for those operations.

```java
import java.awt.*; // for Color

class Stone extends Critter {
  public Attack fight(String opponent) {
    return Attack.ROAR;
  }

  public Color getColor() {
    return Color.GRAY;
  }

  public String toString() {
    return "S";
  }
}
```

Running the Simulator:

When you press the Go button, it begins a series of turns. On each turn, the simulator does the following for each animal:

- move the animal once (calling its getMove method), in random order
- if the animal has moved onto an occupied square, fight! (call both animals' fight methods)
- if the animal has moved onto food, ask it if it wants to eat (call the animal's eat method)

After moving all animals, the simulator redraws the screen, asking each animal for its toString and getColor values. It can be difficult to test and debug with so many animals. We suggest adjusting the initial settings to use a smaller world and fewer animals. There is also a Debug checkbox that, when checked, prints console output about the game behavior.
Critter Classes:
The following are the five animal classes to implement. Each has one constructor that accepts exactly the parameter(s) in
the table. For random moves, each choice must be equally likely. Use a Random object or the Math.random method.

1. Ant

<table>
<thead>
<tr>
<th>constructor</th>
<th>public Ant(boolean walkSouth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>red</td>
</tr>
<tr>
<td>eating behavior</td>
<td>always returns true</td>
</tr>
<tr>
<td>fighting behavior</td>
<td>always scratch</td>
</tr>
<tr>
<td>movement</td>
<td>if the Ant was constructed with a walkSouth value of true, then alternates between south and east in a zigzag (S, E, S, E, ...); otherwise, if the Ant was constructed with a walkSouth value of false, then alternates between north and east in a zigzag (N, E, N, E, ...)</td>
</tr>
<tr>
<td>toString</td>
<td>"%" (percent)</td>
</tr>
</tbody>
</table>

2. Bird

<table>
<thead>
<tr>
<th>constructor</th>
<th>public Bird()</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>blue</td>
</tr>
<tr>
<td>eating behavior</td>
<td>returns true if the bird is hungry; the bird becomes hungry for a single piece of food if it has fought one or more times recently without eating</td>
</tr>
<tr>
<td>fighting behavior</td>
<td>roars if the opponent is an Ant ("%"); otherwise pounces</td>
</tr>
<tr>
<td>movement</td>
<td>clockwise square: first goes north 3 times, then east 3 times, then south 3 times, then west 3 times, then repeats</td>
</tr>
<tr>
<td>toString</td>
<td>"^" (caret) if the bird’s last move was north or it has not moved; ">" (greater-than) if the bird’s last move was east; "V" (uppercase letter v) if the bird’s last move was south; "<" (less-than) if the bird’s last move was west</td>
</tr>
</tbody>
</table>

Think of the Bird as having a "hunger" that is triggered by fighting. Initially the Bird is not hungry (so eat returns false). But if the Bird gets into a fight or a series of fights (if fight is called on it one or more times), it becomes hungry. When a Bird is hungry, the next single call to eat should return true. Eating once causes the Bird to become "full" again so that future calls to eat will return false, until the Bird’s next fight or series of fights.

3. Hippo

<table>
<thead>
<tr>
<th>constructor</th>
<th>public Hippo(int hunger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>gray if the hippo is still hungry (if eat would return true); otherwise white</td>
</tr>
<tr>
<td>eating behavior</td>
<td>returns true the first hunger times it is called, and false after that</td>
</tr>
<tr>
<td>fighting behavior</td>
<td>if this Hippo is hungry (if eat would return true), then scratches; else pounces</td>
</tr>
<tr>
<td>movement</td>
<td>moves 5 steps in a random direction (north, south, east, or west), then chooses a new random direction and repeats</td>
</tr>
<tr>
<td>toString</td>
<td>the number of pieces of food this Hippo still wants to eat, as a String</td>
</tr>
</tbody>
</table>

The Hippo constructor accepts a parameter for the maximum number of food that Hippo will eat in its lifetime (the number of times it will return true from a call to eat). For example, a Hippo constructed with a parameter value of 8 will return true the first 8 times eat is called and false after that. Assume that the value passed is non-negative.

The toString method for a Hippo returns the number of times that a call to eat that would return true for that Hippo. For example, if a new Hippo(4) is constructed, initially its toString return "4". After eat has been called on it once, calls to toString return "3", and so on, until the Hippo is no longer hungry, after which all calls to toString return "0". You can convert a number to a string by concatenating it with an empty string. For example, "" + 7 makes "7".

(continued on next page)
4. Vulture

<table>
<thead>
<tr>
<th>constructor</th>
<th>public Vulture(int squareSize)</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>black</td>
</tr>
<tr>
<td>eating behavior</td>
<td>returns true if the vulture is hungry; the vulture becomes hungry for a single piece of food if it has fought one or more times recently without eating</td>
</tr>
<tr>
<td>fighting behavior</td>
<td>roars if the opponent is an Ant ("%") ; otherwise pounces</td>
</tr>
<tr>
<td>movement</td>
<td>clockwise square: first goes north squareSize times, then east squareSize times, then south squareSize times, then west squareSize times, then repeat</td>
</tr>
<tr>
<td>toString</td>
<td>"^" (caret) if the vulture's last move was north or has not moved; ">" (greater-than) if the vulture's last move was east; "V" (uppercase letter v) if the vulture's last move was south; "<" (less-than) if the vulture's last move was west</td>
</tr>
</tbody>
</table>

The Vulture is constructed with an integer that affects its movement. The vulture moves in a N/E/S/W clockwise square pattern. The integer passed to the Vulture's constructor indicates how many times that particular Vulture should move in each of the four directions before turning. For example, a new Vulture(7) should move north 7 times, then east 7 times, then south 7 times, then west 7 times, then repeat.

Think of the Vulture as having a "hunger" that is triggered by fighting. Initially the Vulture is not hungry (so eat returns false). But if the Vulture gets into a fight or a series of fights (if fight is called on it one or more times), it becomes hungry. When a Vulture is hungry, the next call to eat should return true. Eating once causes the Vulture to become "full" again so that future calls to eat will return false, until the Vulture's next fight or series of fights.

5. Husky

<table>
<thead>
<tr>
<th>constructor</th>
<th>public Husky() (must not accept any parameters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>all behavior</td>
<td>you decide (see below)</td>
</tr>
</tbody>
</table>

You will decide the behavior of your Husky class. Part of your grade will be based upon writing creative and non-trivial Husky behavior. The following are some guidelines and hints about how to write an interesting Husky.

Your Husky's fighting behavior may want to utilize the opponent parameter to the fight method, which tells you what kind of critter you are fighting against (such as "%" if you are fighting against a Ant). Your Husky can return any text you like from toString (besides null) and any color from getColor. Each critter's getColor and toString are called on each simulation round, so you can have a Husky that displays differently over time. The toString text is also passed to other animals when they fight you; you may want to try to fool other animals.

Each critter class has some additional methods that it receives through inheritance from Critter. Your Husky may want to use these methods to guide its behavior. None of the methods below are needed for Ant, Bird, Hippo, or Vulture.

- public int getX(), public int getY()
 Returns your critter's current x and y coordinates.
 For example, to check whether your critter's x-coordinate is greater than 10, you would write code such as:
  ```java
  if (getX() > 10) {
      // your code here
  }
  ```

- public int getWidth(), public int getHeight()
 Returns the width and height of the simulation grid.

- public String getNeighbor(Direction direction)
 Returns a String representing what is next to your critter in the given direction. " " means an empty square.
 For example, to check if your neighbor to the west is a "Q", you could write this code in your getMove method:
  ```java
  if (getNeighbor(Direction.WEST).equals("Q")) {
      // your code here
  }
  ```

- public void win(), public void sleep(), public void mate(), public void reset(), public void lose(), public void wakeup(), public void mateEnd()
 The simulator calls these methods on your critter to notify you when you have won/lost a fight, been put to sleep/wake up, start/end mating, or when the game world has reset, respectively.
Development Strategy:
The simulator runs even if you haven't completed all the critters. The classes increase in difficulty from Ant to Bird to Hippo. We suggest doing Ant first. Look at Stone.java and the lecture/section examples to see the general structure.

It will be impossible to implement each behavior if you don't have the right state in your object. As you start writing each class, spend some time thinking about what state will be needed to achieve the desired behavior.

One thing that students in the past have found particularly difficult to understand is the various constructors for each type of animal. Some of the constructors accept parameters that guide the behavior of later methods of the animal. It is your job to store data from these parameters into fields of the animal as appropriate, so that it will "remember" the proper information and will be able to use it later when the animal's other methods are called by the simulator.

Test your code incrementally. A critter class will compile even if you have not written all of the methods (the unwritten ones will use default behavior). So add one method, run the simulator to see that it works, then add another.

Critter Tournament:
On the last day of class, we will host a Critter tournament. In each battle, two students' Husky classes will be placed into the simulator along with the other standard animals. The student with the higher score in the right sidebar advances.

A "battle" is defined as the following: We run CritterMain with a standard 60x50 world, using 25 of each kind of animal. The animals present are Ants, Birds, Hippos, Vultures, Stones, and two students' Huskys. We start the simulator and let it run until either one student's Huskys are completely eliminated or until roughly 1000 moves have passed. At this point whichever student's Husky species has the more points wins the battle.

Think of the tournament like one of the major pro sports. We will run a "regular season" in which every student's Husky species will play many battles against randomly chosen opponent Husky classes. We run a season of many games (at least 64 for each student), then we grab the top 16 students that have the best win/loss records. They advance to the "playoffs", which will take place live in lecture on the last day of class.

The playoffs consists of a 16-Husky bracket similar to part of an NCAA basketball tournament bracket. Husky #1 battles #16, #2 battles #15, and so on. Winners advance and losers are eliminated. Eventually one Husky is the champion.

No grade points will be based on tournament performance. For example, a Husky that sits completely still might fare well in the tournament, but it will not receive full grade points because it is too trivial.

Style Guidelines:
Since this assignment is largely about classes and objects, much of the style grading will be about how well you follow proper object-oriented programming style. You should encapsulate the data inside your objects, and you should not declare lots of unnecessary data fields to store information that isn't vital to the state of the object. Style points will also be awarded for expressing each critter's behavior elegantly.

Another aspect of the style of this program is inheritance. Your critter classes should properly extend the Critter superclass as described. Inheritance can also be used to remove redundancy between similar classes, and you should make use of this concept in your classes as appropriate.

Some of the style points for this assignment will be awarded on the basis of how much energy and creativity you put into defining an interesting Husky class. These points allow us to reward the students who spend time writing an interesting critter definition. Your Husky's behavior should not be trivial or closely match that of an existing animal shown in class.

Follow past style guidelines about indentation, spacing, identifiers, and localizing variables. Place comments at the beginning of each class documenting that critter's behavior, and on any complex code. Your critters should not produce any console output. For reference, our Ant, Bird, Hippo, and Vulture together occupy just under 199 lines including blank lines and comments (117 "substantive" lines, according to our Indenter tool).

The Husky is not graded on internal correctness at all. Its code does not need to be commented, can be redundant, and can use any advanced material you like, so long as it works properly and obeys the other constraints described previously.