
1 of 12

CSE 142 Sample Final Exam #8
(based on Summer 2009's final; thanks to Victoria Kirst)

1. Array Mystery
Consider the following method:
public static void arrayMystery(int[] a) {
 for (int i = 1; i < a.length - 1; i++) {
 a[i] = a[i + 1] + a[i - 1];
 }
}

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes
if the integer array in the left-hand column is passed as a parameter to it.

Original Contents of Array Final Contents of Array

int[] a1 = {3, 7};
arrayMystery(a1);

int[] a2 = {4, 7, 4, 2, 10, 9};
arrayMystery(a2);

int[] a3 = {1, 5, 0, 0, 5, 0};
arrayMystery(a3);

int[] a4 = {13, 0, -4, -2, 0, -1};
arrayMystery(a4);

int[] a5 = {2, 4, 6, 8, 16};
arrayMystery(a5);

2 of 12

2. Reference Semantics Mystery
(Missing; we didn't give this type of question that quarter.)

3. Inheritance Mystery
Assume that the following classes have been defined:

public class Denny extends John {
 public void method1() {
 System.out.print("denny 1 ");
 }

 public String toString() {
 return "denny " + super.toString();
 }
}

public class Cass {
 public void method1() {
 System.out.print("cass 1 ");
 }

 public void method2() {
 System.out.print("cass 2 ");
 }

 public String toString() {
 return "cass";
 }
}

public class Michelle extends John {
 public void method1() {
 System.out.print("michelle 1 ");
 }
}

public class John extends Cass {
 public void method2() {
 method1();
 System.out.print("john 2 ");
 }

 public String toString() {
 return "john";
 }
}

Given the classes above, what output is produced by the following code?
Cass[] elements = {new Cass(), new Denny(), new John(), new Michelle()};
for (int i = 0; i < elements.length; i++) {
 elements[i].method1();
 System.out.println();
 elements[i].method2();
 System.out.println();
 System.out.println(elements[i]);
 System.out.println();
}

3 of 12

4. File Processing
Write a static method called runningSum that accepts as a parameter a Scanner holding a sequence of real numbers
and that outputs the running sum of the numbers followed by the maximum running sum. In other words, the nth
number that you report should be the sum of the first n numbers in the Scanner and the maximum that you report
should be the largest such value that you report. For example if the Scanner contains the following data:

3.25 4.5 -8.25 7.25 3.5 4.25 -6.5 5.25

your method should produce the following output:
running sum = 3.25 7.75 -0.5 6.75 10.25 14.5 8.0 13.25
max sum = 14.5

The first number reported is the same as the first number in the Scanner (3.25). The second number reported is the
sum of the first two numbers in the Scanner (3.25 + 4.5). The third number reported is the sum of the first three
numbers in the Scanner (3.25 + 4.5 + -8.25). And so on. The maximum of these values is 14.5, which is reported on
the second line of output. You may assume that there is at least one number to read.

4 of 12

5. File Processing
Write a static method named plusScores that accepts as a parameter a Scanner containing a series of lines that
represent student records. Each student record takes up two lines of input. The first line has the student's name and
the second line has a series of plus and minus characters. Below is a sample input:

Kane, Erica
--+-+
Chandler, Adam
++-+
Martin, Jake
+++++++
Dillon, Amanda
++-++-+-

The number of plus/minus characters will vary, but you may assume that at least one such character appears and that
no other characters appear on the second line of each pair. For each student you should produce a line of output with
the student's name followed by a colon followed by the percent of plus characters. For example, if the input above is
stored in a Scanner called input, the call of plusScores(input); should produce the following output:
Kane, Erica: 40.0% plus
Chandler, Adam: 75.0% plus
Martin, Jake: 100.0% plus
Dillon, Amanda: 62.5% plus

5 of 12

6. Array Programming
Write a method priceIsRight that accepts an array of integers bids and an integer price as parameters. The method
returns the element in the bids array that is closest in value to price without being larger than price. For example, if
bids stores the elements {200, 300, 250, 999, 40}, then priceIsRight(bids, 280) should return 250,
since 250 is the bid closest to 280 without going over 280. If all bids are larger than price, then your method should
return -1.

The following table shows some calls to your method and their expected results:

Arrays Returned Value
int[] a1 = {900, 885, 989, 1}; priceIsRight(a1, 880) returns 1
int[] a2 = {200}; priceIsRight(a2, 120) returns 200
int[] a3 = {500, 300, 241, 99, 501}; priceIsRight(a3, 50) returns -1
You may assume there is at least 1 element in the array, and you may assume that the price and the values in bids will
all be greater than or equal to 1. Do not modify the contents of the array passed to your method as a parameter.

6 of 12

7. Array Programming
Write a static method named compress that accepts an array of integers a1 as a parameter and returns a new array
that contains only the unique values of a1. The values in the new array should be ordered in the same order they
originally appeared in. For example, if a1 stores the elements {10, 10, 9, 4, 10, 4, 9, 17}, then
compress(a1) should return a new array with elements {10, 9, 4, 17}.

The following table shows some calls to your method and their expected results:

Array Returned Value
int[] a1 = {5, 2, 5, 3, 2, 5}; compress(a1) returns {5, 2, 3}
int[] a2 = {-2, -12, 8, 8, 2, 12}; compress(a2) returns {-2, -12, 8, 2, 12}
int[] a3 = {4, 17, 0, 32, -3, 0, 0}; compress(a3) returns {4, 17, 0, 32, -3}
int[] a4 = {-2, -5, 0, 5, -92, -2, 0, 43}; compress(a4) returns {-2, -5, 0, 5, -92, 43}
int[] a5 = {1, 2, 3, 4, 5}; compress(a5) returns {1, 2, 3, 4, 5}
int[] a6 = {5, 5, 5, 5, 5, 5}; compress(a6) returns {5}
int[] a7 = {}; compress(a7) returns {}
Do not modify the contents of the array passed to your method as a parameter.

7 of 12

8. Critters
Write a class Caterpillar that extends the Critter class from our assignment, along with its movement behavior.

Caterpillars move in an increasing NESW square pattern: 1 move north, 1 move east, 1 move west, 1 move south,
then 2 moves north, 2 moves east, etc., the square pattern growing larger and larger indefinitely. If a Caterpillar
runs into a piece of food, the Caterpillar eats the food and immediately restarts the NESW pattern. The size of the
Caterpillar’s movement is also reset back to 1 move in each direction again, and the increasing square pattern
continues as before until another piece of food is encountered.

Here is a sample movement pattern of a Caterpillar:

• north 1 time, east 1 time, south 1 time, west 1 time
• north 2 times, east 2 times, south 2 times, west 2 times
• north 3 times, east 3 times, south 3 times, west 3 times
• (runs into food)
• north 1 time, east 1 time, south 1 time, west 1 time
• north 2 times, east 1 time
• (runs into food)
• north 1 time
• (runs into food)
• north 1 time, east 1 time, south 1 time, west 1 time
• north 2 times, east 2 times, south 2 times, west 2 times
• (etc.)
Write your complete Caterpillar class below. All other aspects of Caterpillar besides eating and movement
behavior use the default critter behavior. You may add anything needed to your class (fields, constructors, etc.) to
implement this behavior appropriately.

8 of 12

9. Classes and Objects
Suppose that you are provided with a pre-written class Date as
described at right. (The headings are shown, but not the method
bodies, to save space.) Assume that the fields, constructor, and
methods shown are already implemented. You may refer to them
or use them in solving this problem if necessary.

Write an instance method named subtractWeeks that will be
placed inside the Date class to become a part of each Date
object's behavior. The subtractWeeks method accepts an
integer as a parameter and shifts the date represented by the Date
object backward by that many weeks. A week is considered to be
exactly 7 days. You may assume the value passed is non-
negative. Note that subtracting weeks might cause the date to
wrap into previous months or years.

For example, if the following Date is declared in client code:
Date d = new Date(9, 19);

The following calls to the subtractWeeks method would
modify the Date object's state as indicated in the comments.
Remember that Date objects do not store the year. The date
before January 1st is December 31st. Date objects also ignore
leap years.
Date d = new Date(9, 19);
d.subtractWeeks(1); // d is now 9/12
d.subtractWeeks(2); // d is now 8/29
d.subtractWeeks(5); // d is now 7/25
d.subtractWeeks(20); // d is now 3/7
d.subtractWeeks(110); // d is now 1/26
 // (2 years prior)

// Each Date object stores a single
// month/day such as September 19.
// This class ignores leap years.

public class Date {
 private int month;
 private int day;

 // Constructs a date with
 // the given month and day.
 public Date(int m, int d)

 // Returns the date's day.
 public int getDay()

 // Returns the date's month.
 public int getMonth()

 // Returns the number of days
 // in this date's month.
 public int daysInMonth()

 // Modifies this date's state
 // so that it has moved forward
 // in time by 1 day, wrapping
 // around into the next month
 // or year if necessary.
 // example: 9/19 -> 9/20
 // example: 9/30 -> 10/1
 // example: 12/31 -> 1/1

 public void nextDay()

 // your method would go here

}

9 of 12

Solutions
1. Array Mystery

Expression
int[] a1 = {3, 7};
arrayMystery(a1);

int[] a2 = {4, 7, 4, 2, 10, 9};
arrayMystery(a2);

int[] a3 = {1, 5, 0, 0, 5, 0};
arrayMystery(a3);

int[] a4 = {13, 0, -4, -2, 0, -1};
arrayMystery(a4);

int[] a5 = {2, 4, 6, 8, 16};
arrayMystery(a5);

Final Contents of Array
[3, 7]

[4, 8, 10, 20, 29, 9]

[1, 1, 1, 6, 6, 0]

[13, 9, 7, 7, 6, -1]

[2, 8, 16, 32, 16]

2. Reference Semantics Mystery

(missing)

3. Inheritance Mystery
cass 1
cass 2
cass

denny 1
denny 1 john 2
denny john

cass 1
cass 1 john 2
john

michelle 1
michelle 1 john 2
john

10 of 12

4. File Processing (two solutions shown)

public static void runningSum(Scanner input) {
 double sum = input.nextDouble();
 double max = sum;
 System.out.print("running sum = " + sum);
 while (input.hasNextDouble()) {
 sum += input.nextDouble();
 System.out.print(" " + sum);
 if (sum > max) {
 max = sum;
 }
 }
 System.out.println();
 System.out.println("max sum = " + max);
}

public static void runningSum(Scanner input) {
 double sum = 0;
 double max = 0;
 System.out.print("running sum =");
 while (input.hasNext()) {
 sum += input.nextDouble();
 System.out.print(" " + sum);
 max = Math.max(max, sum);
 }
 System.out.println("\nmax sum = " + max);
}

5. File Processing (two solutions shown)

public static void plusScores(Scanner input) {
 while (input.hasNextLine()) {
 String name = input.nextLine();
 String data = input.nextLine();
 int plus = 0;
 int count = 0;

 for (int i = 0; i < data.length(); i++) {
 count++;
 if (data.charAt(i) == '+') {
 plus++;
 }
 }

 double percent = 100.0 * plus / count;
 System.out.println(name + ": " + percent + "% plus");
 }
}

public static void plusScores(Scanner s) {
 while (s.hasNextLine()) {
 System.out.print(s.nextLine() + ": ");
 String p = s.nextLine();
 System.out.print(100.0 * p.replace("-", "").length() / p.length() + "% plus");
 }
}

11 of 12

6. Array Programming (three solutions shown)

public static int priceIsRight(int[] bids, int price) {
 int bestPrice = -1;
 for (int i = 0; i < bids.length; i++) {
 if (bids[i] <= price && bids[i] > bestPrice) {
 bestPrice = bids[i];
 }
 }
 return bestPrice;
}

public static int priceIsRight(int[] bids, int price) {
 int[] difference = new int[bids.length];
 int bestAnswer = Integer.MIN_VALUE;
 for (int i = 0; i < difference.length; i++) {
 difference[i] = bids[i] - price;
 }
 for (int i = 0; i < difference.length; i++) {
 if (difference[i] <= 0) {
 bestAnswer = (int) Math.max(difference[i], bestAnswer);
 }
 }
 if (bestAnswer == Integer.MIN_VALUE) {
 return -1;
 } else {
 return bestAnswer + price;
 }
}

public static int priceIsRight(int[] prices, int price) {
 int bestPrice = prices[0];
 for (int i = 1; i < prices.length; i++) {
 if (prices[i] <= price && prices[i] > bestPrice) {
 bestPrice = prices[i];
 }
 }

 if (bestPrice <= price) {
 return bestPrice;
 } else {
 return -1;
 }
}

7. Array Programming (two solutions shown)

// faster; makes use of sorted nature of array
public static int[] compress(int[] a1) {
 int[] unique = new int[a1.length];
 int uniqueCount = 1;
 unique[0] = a1[0];
 for (int i = 0; i < a1.length - 1; i++) {
 if (a1[i] != a1[i + 1]) {
 unique[uniqueCount] = a1[i + 1];
 uniqueCount++;
 }
 }

 int[] compressed = new int[uniqueCount];
 for (int i = 0; i < compressed.length; i++) {
 compressed[i] = unique[i];
 }
 return compressed;
}

// slower, but works for any array
public static int[] compress(int[] a1) {
 int[] unique = new int[a1.length];
 int numUnique = 0;
 for (int i = 0; i < a1.length; i++) {
 int count = 0;
 for (int j = 0; j < numUnique; j++) {
 if (a1[i] == unique[j]) {
 count++;
 }
 }
 if (count == 1) {
 unique[numUnique++] = a1[i];
 }
 }
 return Arrays.copyOf(unique, numUnique);
}

12 of 12

8. Critters
public class Caterpillar extends Critter {
 private int stepLength = 1;
 private int steps = 0;

 public boolean eat() {
 steps = 0;
 stepLength = 1;
 return true;
 }

 public Direction getMove() {
 steps++;
 if (steps > 4 * stepLength) {
 stepLength++;
 steps = 1;
 }

 if (steps <= stepLength) {
 return Direction.NORTH;
 } else if (steps <= 2 * stepLength) {
 return Direction.EAST;
 } else if (steps <= 3 * stepLength) {
 return Direction.SOUTH;
 } else {
 return Direction.WEST;
 }
 }
}

9. Objects
public void subtractWeeks(int weeks) {
 for (int i = 1; i <= weeks; i++) {
 day -= 7;
 if (day <= 0) {
 month--;
 if (month == 0) {
 month = 12;
 }
 day += daysInMonth();
 }
 }
}

public void subtractWeeks(int weeks) {
 int days = 7 * weeks;
 for (int i = 1; i <= days; i++) {
 day--;
 if (day == 0) {
 month--;
 if (month == 0) {
 month = 12;
 }
 day = daysInMonth();
 }
 }
}

public void subtractWeeks(int weeks) {
 day -= 7 * weeks;
 while (day <= 0) {
 month--;
 if (month == 0) {
 month = 12;
 }
 day += daysInMonth();
 }
}

