
2/28/2008

>>> Overview

• Arrays in Python – a.k.a. Lists

• Ranges are Lists

• Strings vs. Lists

• Tuples vs. Lists

• Map-Reduce

• Lambda

• Review: Printing to a file• Review: Printing to a file

>>> Arrays in Python
Python has a data type known as a list. For our purposes, lists are arrays.

Declaration syntax: <name> = [<value>, <value>, <value>, …, <value>]

<name> = [<default value>] * <initial array size>

Example: numbers = [12, 49, -2, 26, 5, 17, -6]

zeros = [0] * 10

Indexing: Lists have zero based indexing from front

Negative Indexing: You can also refer to an element by a negative index representing how far it

is from the end.

Example: index from front 0 1 2 3 4 5

numbers = [13, 25, 39, 46, 54, 68]

index from back -6 -5 -4 -3 -2 -1

>>> Methods for Lists
Basic Methods – directly modify the lists

• list.append(item) – appends the item to the end of the list

• list.insert(index, item) – inserts the item at the specified index

• list.remove(item) – removes the first occurrence of item from the list

•list.extend(second_list) – appends second_list to the list

Mathematical Operators – behave as you would expect them to

• (+) Returns a new list by adding two lists. Appends the right-hand list to the left-hand list. • (+) Returns a new list by adding two lists. Appends the right-hand list to the left-hand list.

• (+=) Appends the right-hand list to the left-hand list. Modifies left list. Acts like extend()

• (*) Multiplies a list and an integer “n”. Returns a new list that has n-1 versions of original

list appended to it

Examples:

list = [34, 21, 29, 86, 29]

list.append(3) => [34, 21, 29, 86, 29, 3]

list.insert(2, 3) => [34, 21, 3, 29, 86]

list2 = [1, 2, 3, 4]

list.remove(29) => [34, 21, 86, 29]

list.extend(list2) => [34, 21, 86, 29, 1, 2, 3, 4]

[0] * 5 => [0, 0, 0, 0, 0]

>>> More Methods
More Methods

•list.count(element) – returns number of times element occurs in the list

•list.sort – sorts the element in place

•list.reverse – reverses the element in place

Slicing – can get a sub list of a list

<name>[<first index inclusive> : <second index not-inclusive>]

list = [4, 23, 16, 7, 29, 56, 81]

list[3:6] => [16, 7, 29]

Length of lists

len(list) => 7

Split – returns a list

“lets try some splitting here”.split(“ “) => ['lets', 'try', 'some', 'splitting', 'here']

>>> Printing Lists
There are two ways to print lists.

list1 = [“elements”, “of”, “our”, “list”]

list2 = [21, 29, 86, 19, 42]

String concatenation and type conversion:

print “This list is ” + str(list1) => This list is [“elements”, “of”, “our”, “list”]print “This list is ” + str(list1) => This list is [“elements”, “of”, “our”, “list”]

print “This list is ” + str(list2) => This list is [21, 29, 86, 19, 42]

Comma separated arguments in the print method:

print “This list is”, list1 => This list is [“elements”, “of”, “our”, “list”]

print “This list is”, list2 => This list is [21, 29, 86, 19, 42]

>>> Ranges are Lists
Recall how we used the method range() in for loops.

Calling range returns a list with the patterns specified by range().

Example:

range(5) => [0, 1, 2, 3, 4]

range(0, 10, 2) => [0, 2, 4, 6, 8]

Using a for loop iterates over each element in a list.Using a for loop iterates over each element in a list.

Example: Example 2:

list = [3, 6, 5, 7, 15] list = [3, 6, 5, 7, 15]

for i in list: for i in range(len(list))

print i list[i] = list[i] + 1

>>> Strings vs. Lists
Although Strings are different from lists, Strings can be accessed like lists.

Example:

s = “Hello!”

s[1] => ‘e’

s[-1] => ‘!’

s[1:5] => “ello”

s.count(“l”) => 2s.count(“l”) => 2

Once a String has been created, it cannot be changed.

Methods that alter a list cannot be called on Strings.

Note: Python does not distinguish between characters and strings.

Characters are just Strings of length 1.

>>> Tuples vs. Lists
Additionally, tuples can be accessed like lists. However, tuples are not list.

Tuples, like strings cannot be changed once they have been created.

Example:

s = (123, 456, 789, 246, 357)

s[1] => 456

s[-1] => 357

s[1:4] => (456, 789, 246)s[1:4] => (456, 789, 246)

>>> Random with lists

>>> from random import *
>>> randint(0,9)
1
>>> randint(0,9)
4
>>> choice(range(10))
7

random.randint(a,b)
returns an int between a and b inclusive

random.choice(seq)
returns a random element of the sequence

>>> Review - Files

Opening files:

open(filename) ~ defaults to read

open(filename, "r") ~ specifies read

open(filename, "w") ~ writes to this file

File objects: (we won't really have to

filename = "imdb.txt“

f1 = open(filename)
for line in f1:
print line.upper()

imdb.py

1
2
3
4
5File objects: (we won't really have to

use these)
* .readlines() ~ file as a list of lines

* .read() ~ file as a string

* .readline(e) ~ next line as string

print line.upper()
f1.close()

f2 = open(filename, “w”)
f2.write(“This will over write the file \n”)
f2.close()

5
6
7
8
9
10

>>> Sections Example in Python
Let’s solve the Sections problem. We want to take the following line from a file:

111111101011111101001110110110110001110……

And turn it into:

Sections attended: [9, 6, 7, 4, 3]

Sections scores: [20, 18, 20, 12, 9]

Sections grades: [100.0, 90.0, 100.0, 60.0, 45.0]Sections grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Sections attended: [6, 7, 5, 6, 4]

Sections scores: [18, 20, 15, 18, 12]

Sections grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Sections attended: [5, 6, 5, 7, 6]

Sections scores: [15, 18, 15, 20, 18]

Sections grades: [75.0, 90.0, 75.0, 100.0, 90.0]

>>> Map-Reduce: Map
Python supports functional programming.

Functional programming differs from what we have been doing, by treating programming as the

evaluation of a series of mathematical functions. Map() and reduce() are functional language

methods. They return a new list instead of modifying the one passed.

Map – takes a function and a list and applies the function to each individual element in the list.

def add_one(x)def add_one(x)

return x + 1

list = [0, 2, 4, 6, 8]

new_list = map(add_one, list)

Looking at our new list:

new_list => [1, 3, 5, 7, 9]

>>> Map-Reduce: Reduce
Reduce – takes a function and a list and reduces the list to a single element by combining the

element using the given function.

def multiply(x, y)

return x * y

list = [2, 4, 6, 8, 10]

value = reduce(multiply, list)value = reduce(multiply, list)

Looking at our value:

value => 3840

>>> Sections Example - Map

Let’s use the functional method map() to modify our Sections Example.

>>> Lambda
Lambda is a keyword that designates an “anonymous function”. This is a lot of terminology, but

lets see how we can use it.

Instead of defining a method, and then applying it using map():

def add_one(x)

return x + 1

list = [0, 2, 4, 6, 8]list = [0, 2, 4, 6, 8]

map(add_one, list)

We can do it all in one line using lambda and anonymous functions:

map(lambda x : x + 1, list)

Lets use lambda to further simplify our Sections Example.

