
2/7/20082/7/2008

>>> Overview

* boolean
* while* while
* random
* tuples

>>> boolean

Just like Java, there are boolean values.
These values are True and False.

True

>>> True
True
>>> False
FalseTrue

False

<
>
<=
>=
==
!=
or
and

False
>>> 2==3
False
>>> "this"=="this"
True
>>> 2==3 and 4==4
False
>>> x = not 1 == 2
>>> x
True

and
not

>>> while

The while loop translates nicely
from Java to Python. sum = 0

number = input(“Enter a number (-1 to quit)? ")

sentinel.py
1
2
3

Scanner console = new Scanner(System.in);
int sum = 0;
System.out.print("Enter a number (-1 to quit): ");
int number = console.nextInt();

Sentinel.java
1
2
3
4

while number != -1:
sum += number
number = input(" Enter a number (-1 to quit)? ")

print "The total is " + str(sum)

3
4
5
6
7
8
9
10

int number = console.nextInt();

while (number != -1) {
sum = sum + number;
System.out.print("Enter a number (-1 to quit): ");
number = console.nextInt();

}

System.out.println("The total is " + sum);

4
5
6
7
8
9
10

>>> random
Just like in Java, python also has random object. Here is an example:

>>> from random import *
>>> randint(0,9)
11
>>> randint(0,9)
4
>>> choice(range(10))
7

random.randint(a,b)
returns an int between a and b inclusive

random.choice(seq)
returns a random element of the sequence

>>> tuples as points
Python does not have Point Objects. Instead we
use tuples. A tuple is able to hold multiple values.
These values can correspond to the x and y
coordinates of a point.

The syntax for a tuple is:

<variable name> = (value1, value 2, ..., valueN)

For a point, we only need two values.

>>> p = (3, 5)
>>> p
(3, 5)

Creates a tuple where the first value is 3 and the
second value is 5. This can represent a 2D point
where the “x” value is 3 and the “y” value is 5.

>>> retrieving tuple values
If we wish to use the values in a tuple, we can
assign each value to a vairable.

>>> p = (3, 5)
>>> p

This creates two new variables x and y, and
assigns the first value in our tuple to x, and the

>>> p
(3, 5)

>>> (x, y) = p
>>> x
3
>>> y
5

assigns the first value in our tuple to x, and the
second value to y.

>>> parameters and returns
Tuples can be passed just like any other variable. Once inside a method,
we will want to access its values.

Example:
def equal(p1, p2):def equal(p1, p2):

(x1, y1) = p1
(x2, y2) = p2
return x1==x2 and y1==y2

Additionally, we can return tuples. Assume we wanted to add two two.
This does not make much sense for points, but does for 2D vectors.

def addVectors(p1, p2):
(x1, y1) = p1
(x2, y2) = p2(x2, y2) = p2
return (x1 + x2, y1 + y2)

NOTE: Tuples are “immutable.” This
means that the values within a tuple
cannot be altered once it has been
created. Because of this, if we would
like to change the value of our tuples,
we must create a new tuple with the
values we want, and use it instead.

>>> point distance method

Calculates the distance between two points
def distance(p1, p2):

(x1, y1) = p1
(x2, y2) = p2(x2, y2) = p2
dx = abs(x1 - x2)
dy = abs(y1 - y2)
return sqrt(dx * dx + dy * dy)

>>> mini-yahtzee
plays until 3 dice have the same value

from random import *

def miniYahtzee():def miniYahtzee():
d1 = 0
d2 = 1
d3 = 2
count = 0

while not(d1 == d2 == d3):
d1 = randint(1, 6)
d2 = randint(1, 6)
d3 = randint(1, 6)
print str(d1), str(d2), str(d3)print str(d1), str(d2), str(d3)
count += 1

print “Mini-Yahtzee in” + str(count) + “moves”

>>> graphic example - rectangles
from random import *
from drawingpanel import *

def drawRandomRect():
x = randint(0,490)x = randint(0,490)
y = randint(0,490)
randomColor = choice(("red", "orange", "yellow", "green", "blue", "purple"))
size = randint(1,100)

g.create_rectangle(x, y, x+size, y+size, fill=randomColor)

return randomColor == "red"

#main
panel = DrawingPanel(500, 500)
g = panel.get_graphics()g = panel.get_graphics()
reds = 0

while reds < 20:
if drawRandomRect():

reds += 1

>>> Homework #5
Random walk is becoming random slither!

• No DEBUG mode
• Remember to use raw_input() for gathering a whole string of user input
• Random-Slither will be green and will change shades of green.

Colors can be represented as RGB tuples• Colors can be represented as RGB tuples
• Since Tkinter takes Strings as color arguments, our tuple needs to be converted to

a String of hex values (like web colors)

Example
red = 0
green = 255
blue = 0
hexColor = "#%02x%02x%02x" % (red, green, blue)
create_oval(0, 0, 100, 100, fill=hexColor, outline=hexColor)

To create a single pixel, make a rectangle where x1 equals x2 and y1 equals y2:
create_rectangle(50, 50, 50, 50)

Except where otherwise noted, this work is licensed under

© 2007 Scott Shawcroft, Some Rights Reserved

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nc-sa/3.0

Python® and the Python logo are either a registered trademark or trademark of the Python
Software Foundation. Java™ is a trademark or registered trademark of Sun Microsystems, Inc.

in the United States and other countries.

